Show simple item record

A comparison study of multivariate fixed models and Gene Association with Multiple Traits (GAMuT) for nextâ generation sequencing

dc.contributor.authorChiu, Chi‐yang
dc.contributor.authorJung, Jeesun
dc.contributor.authorWang, Yifan
dc.contributor.authorWeeks, Daniel E.
dc.contributor.authorWilson, Alexander F.
dc.contributor.authorBailey‐wilson, Joan E.
dc.contributor.authorAmos, Christopher I.
dc.contributor.authorMills, James L.
dc.contributor.authorBoehnke, Michael
dc.contributor.authorXiong, Momiao
dc.contributor.authorFan, Ruzong
dc.date.accessioned2017-01-10T19:10:56Z
dc.date.available2018-03-01T16:43:50Zen
dc.date.issued2017-01
dc.identifier.citationChiu, Chi‐yang ; Jung, Jeesun; Wang, Yifan; Weeks, Daniel E.; Wilson, Alexander F.; Bailey‐wilson, Joan E. ; Amos, Christopher I.; Mills, James L.; Boehnke, Michael; Xiong, Momiao; Fan, Ruzong (2017). "A comparison study of multivariate fixed models and Gene Association with Multiple Traits (GAMuT) for nextâ generation sequencing." Genetic Epidemiology 41(1): 18-34.
dc.identifier.issn0741-0395
dc.identifier.issn1098-2272
dc.identifier.urihttps://hdl.handle.net/2027.42/135654
dc.description.abstractIn this paper, extensive simulations are performed to compare two statistical methods to analyze multiple correlated quantitative phenotypes: (1) approximate Fâ distributed tests of multivariate functional linear models (MFLM) and additive models of multivariate analysis of variance (MANOVA), and (2) Gene Association with Multiple Traits (GAMuT) for association testing of highâ dimensional genotype data. It is shown that approximate Fâ distributed tests of MFLM and MANOVA have higher power and are more appropriate for major gene association analysis (i.e., scenarios in which some genetic variants have relatively large effects on the phenotypes); GAMuT has higher power and is more appropriate for analyzing polygenic effects (i.e., effects from a large number of genetic variants each of which contributes a small amount to the phenotypes). MFLM and MANOVA are very flexible and can be used to perform association analysis for (i) rare variants, (ii) common variants, and (iii) a combination of rare and common variants. Although GAMuT was designed to analyze rare variants, it can be applied to analyze a combination of rare and common variants and it performs well when (1) the number of genetic variants is large and (2) each variant contributes a small amount to the phenotypes (i.e., polygenes). MFLM and MANOVA are fixed effect models that perform well for major gene association analysis. GAMuT can be viewed as an extension of sequence kernel association tests (SKAT). Both GAMuT and SKAT are more appropriate for analyzing polygenic effects and they perform well not only in the rare variant case, but also in the case of a combination of rare and common variants. Data analyses of European cohorts and the Trinity Students Study are presented to compare the performance of the two methods.
dc.publisherJohn Wiley & Sons
dc.subject.othermultivariate functional linear models (MFLM)
dc.subject.otherquantitative trait loci
dc.subject.otherrare variants
dc.subject.otherassociation mapping
dc.subject.othercomplex traits
dc.subject.otherfunctional data analysis
dc.subject.othermultivariate analysis of variance (MANOVA)
dc.subject.othercommon variants
dc.titleA comparison study of multivariate fixed models and Gene Association with Multiple Traits (GAMuT) for nextâ generation sequencing
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135654/1/gepi22014_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135654/2/gepi22014-sup0001-Suppmat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135654/3/gepi22014.pdf
dc.identifier.doi10.1002/gepi.22014
dc.identifier.sourceGenetic Epidemiology
dc.identifier.citedreferenceRamsay, J. O., Hooker, G., & Graves, S. ( 2009 ). Functional data analysis with R and Matlab. New York: Springer.
dc.identifier.citedreferencede Boor, C. ( 2001 ). Applied mathematical sciences 27. A practical guide to splines, revised version. New York: Springer.
dc.identifier.citedreferenceFan, R., Wang, Y., Mills, J. L., Wilson, A. F., Baileyâ Wilson, J. E., & Xiong, M. M. ( 2013 ). Functional linear models for association analysis of quantitative traits. Genetic Epidemiology 37, 726 â 742.
dc.identifier.citedreferenceFan, R., Wang, Y., Mills, J. L., Carter, T. C., Lobach, I., Wilson, A. F., â ¦ Xiong, M. M. ( 2014 ). Generalized functional linear models for caseâ control association studies. Genetic Epidemiology 38, 622 â 637.
dc.identifier.citedreferenceFan, R. Z., Wang, Y. F., Boehnke, M., Chen, W., Li, Y., Ren, H. B., â ¦ Xiong, M. M. ( 2015 ). Gene level metaâ analysis of quantitative traits by functional linear models. Genetics 200, 1089 â 1104.
dc.identifier.citedreferenceFan, R. Z., Wang, Y. F., Chiu, C. Y., Chen, W., Ren, H. B., Li, Y., â ¦ Xiong, M. M. ( 2016a ). Metaâ analysis of complex diseases at gene level with generalized functional linear models. Genetics 202, 457 â 470.
dc.identifier.citedreferenceFan, R. Z., Wang, Y. F., Qi, Y., Ding, Y., Weeks, D. E., Lu, Z. H., â ¦ Chen, W. ( 2016b ). Geneâ based association analysis for censored traits via functional regressions. Genetic Epidemiology 40, 133 â 143.
dc.identifier.citedreferenceFan, R. Z., Chiu, C. Y., Jung, J. S., Weeks, D. E., Wilson, A. F., Baileyâ Wilson, J. E., â ¦ Xiong, M. M. ( 2016c ). A comparison study of fixed and mixed effect models for gene level association studies of complex traits. Genetic Epidemiology 40, 702 â 721.
dc.identifier.citedreferenceFerraty, F., & Romain, Y. ( 2010 ). The Oxford handbook of functional data analysis. New York: Oxford University Press.
dc.identifier.citedreferenceHorváth, L., & Kokoszka, P. ( 2012 ). Inference for functional data with applications New York: Springer.
dc.identifier.citedreferenceHuang, J., Johnson, A. D., & ODonnell, C. J. ( 2011 ). PRIMe: A method for characterization and evaluation of pleiotropic regions from multiple genomeâ wide association studies. Bioinformatics 27, 1201 â 1206.
dc.identifier.citedreferenceIonitaâ Laza, I., Lee, S., Makarov, V., Buxbaum, J. D., & Lin, X. ( 2013 ). Sequence kernel association tests for the combined effect of rare and common variants. American Journal of Human Genetics 92, 841 â 853.
dc.identifier.citedreferenceLee, S., Emond, M. J., Bamshad, M. J., Barnes, K. C., Rieder, M. J., Nickerson, D. A., â ¦ Lin, X. ( 2012 ). Optimal unified approach for rareâ variant association testing with application to smallâ sample caseâ control wholeâ exome sequencing studies. American Journal of Human Genetics 91, 224 â 237.
dc.identifier.citedreferenceLiu, D. J., Peloso, G. M., Zhan, X., Holmen, O. L., Zawistowski, M., Feng, S., Nikpay, M., Auer, P. L., Goel, A., Zhang, H., Peters, U., Farrall, M., Orhoâ Melander, M., Kooperberg, C., McPherson, R., Watkins, H., Willer, C. J., Hveem, K., Melander, O., Kathiresan, S., Abecasis, G. R. ( 2014 ). Metaâ analysis of geneâ level tests for rare variant association. Nature Genetics 46, 200 â 204.
dc.identifier.citedreferenceLuo, L., Boerwinkle, E., & Xiong, M. M. ( 2011 ). Association studies for nextâ generation sequencing. Genome Research 21, 1099 â 1108.
dc.identifier.citedreferenceLuo, L., Zhu, Y., & Xiong, M. M. ( 2012 ). Quantitative trait locus analysis for nextâ generation sequencing with the functional linear models. Journal of Medical Genetics 49, 513 â 524.
dc.identifier.citedreferenceLuo, L., Zhu, Y., & Xiong, M. M. ( 2013 ). Smoothed functional principal component analysis for testing association of the entire allelic spectrum of genetic variation. European Journal of Human Genetics 21, 217 â 224.
dc.identifier.citedreferenceMaity, A., Sullivan, P. F., & Tzeng, J. Y. ( 2012 ). Multivariate phenotype association analysis by markerâ set kernel machine regression. Genetic Epidemiology 36, 686 â 695.
dc.identifier.citedreferenceMardis, E. R. ( 2008 ). Nextâ generation DNA sequencing methods. Annual Review of Genomics and Human Genetics 9, 387 â 402.
dc.identifier.citedreferenceMetzker, M. L. ( 2010 ). Sequencing technologies the next generation. Nature Reviews Genetics 11, 31 â 46.
dc.identifier.citedreferenceO’Reilly, P. F., Hoggart, C. J., Pomyen, Y., Calboli, F. C., Elliott, P., Jarvelin, M. R., & Coin, L. J. ( 2012 ). MultiPhen: Joint model of multiple phenotypes can increase discovery in GWAS. PLoS One 7, e34861.
dc.identifier.citedreferenceRamsay, J. O., & Silverman, B. W. ( 2005 ). Functional data analysis ( 2nd ed. ). New York: Springer.
dc.identifier.citedreferenceRao, C. R. ( 1973 ). Linear statistical inference and its applications ( 2nd ed. ). New York: John Wiley & Sons.
dc.identifier.citedreferenceRied, J. S., Döring, A., Oexle, K., Meisinger, C., Winkelmann, J., Klopp, N., â ¦ Gieger, C. ( 2012 ). PSEA: Phenotype Set Enrichment Analysisâ A new method for analysis of multiple phenotypes. Genetic Epidemiology 36, 244 â 252.
dc.identifier.citedreferenceRusk, N., & Kiermer, V. ( 2008 ). Primer: Sequencing the next generation. Nature Methods 5, 15.
dc.identifier.citedreferenceSchaffner, S. F., Foo, C., Gabriel, S., Reich, D., Daly, M. J., & Altshuler, D. ( 2005 ). Calibrating a coalescent simulation of human genome sequence variation. Genome Research 15, 1576 â 1583.
dc.identifier.citedreferenceShendure, J., & Ji, H. ( 2008 ). Nextâ generation DNA sequencing. Nature Biotechnology 26, 1135 â 1145.
dc.identifier.citedreferenceSivakumaran, S., Agakov, F., Theodoratou, E., Prendergast, J. G., Zgaga, L., Manolio, T., â ¦ Campbell, H. ( 2011 ). Abundant pleiotropy in human complex diseases and traits. American Journal of Human Genetics 89, 607 â 618.
dc.identifier.citedreferenceSolovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M., & Smoller, J. W. ( 2013 ). Pleiotropy in complex traits: Challenges and strategies. Nature Reviews Genetics 14, 483 â 495.
dc.identifier.citedreferenceSvishcheva, G. R., Belonogova, N. M., & Axenovich, T. I. ( 2015 ). Regionâ based association test for familial data under functional linear models. PLoS One 10, e0128999.
dc.identifier.citedreferenceVsevolozhskaya, O. A., Zaykin, D. V., Greenwood, M. C., Wei, C., & Lu, Q. ( 2014 ). Functional analysis of variance for association studies. PLoS One 9 ( 9 ), e105074.
dc.identifier.citedreferenceVsevolozhskaya, O. A., Zaykin, D. V., Barondess, D. A., Tong, X., Jadhav, S., & Lu, Q. ( 2016 ). Uncovering local trends in genetic effects of multiple phenotypes via functional linear models. Genetic Epidemiology 40, 210 â 221.
dc.identifier.citedreferenceWang, Y. F., Liu, A. Y., Mills, J. L., Boehnke, M., Wilson, A. F., Baileyâ Wilson, J. E., â ¦ Fan, R. Z. ( 2015 ). Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models. Genetic Epidemiology 39, 259 â 275.
dc.identifier.citedreferenceWu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., & Lin, X. ( 2011 ). Rareâ variant association testing for sequencing data with the sequence kernel association test. American Journal of Human Genetics 89, 82 â 93.
dc.identifier.citedreferenceZuk, O., Schaffner, S. F., Samocha, K., Do, R., Hechter, E., Kathiresan, S., â ¦ Lander, E. S. ( 2014 ). Searching for missing heritability: Designing rare variant association studies. Proceedings of the National Academy of Sciences 111 ( 4 ), E455 â E464.
dc.identifier.citedreferenceFerreira, M. A., & Purcell, S. M. ( 2009 ). A multivariate test of association. Bioinformatics 25, 132 â 133.
dc.identifier.citedreferenceFisher, R. A. ( 1918 ). The correlation between relatives on the supposition of Mendelian inheritance. Philosophical Transactions of the Royal Society of Edinburg 52, 399 â 433.
dc.identifier.citedreferenceGalesloot, T. E., van Steen, K., Kiemeney, L. A., Janss, L. L., & Vermeulen, S. H. ( 2014 ). A comparison of multivariate genomeâ wide association methods. PLoS One 9, e95923.
dc.identifier.citedreferenceAllison, D. B., Thiel, B., St Jean, P., Elston, R. C., Infante, M. C., & Schork, N. J. ( 1998 ). Multiple phenotype modeling in geneâ mapping studies of quantitative traits: Power advantages. American Journal of Human Genetics 63, 1190 â 1201.
dc.identifier.citedreferenceAnderson, T. W. ( 1984 ). An introduction to multivariate statistical analysis ( 2nd ed. ). New York: John Wiley & Sons.
dc.identifier.citedreferenceAnsorge, W. J. ( 2009 ). Nextâ generation DNA sequencing techniques. New Biotechnology 25, 195 â 203.
dc.identifier.citedreferenceBroadaway, K. A., Cutler, D. J., Duncan, R., Moore, J. L., Ware, E. B., Jhun, M. A., â ¦ Epstein, M. P. ( 2016 ). A statistical approach for testing crossâ phenotype effects of rare variants. American Journal of Human Genetics 98, 525 â 540.
dc.identifier.citedreferenceChavali, S., Barrenas, F., Kanduri, K., & Benson, M. ( 2010 ). Network properties of human disease genes with pleiotropic effects. BMC Systems Biology 4, 78.
dc.identifier.citedreferenceDaniels, P. R., Kardia, S. L., Hanis, C. L., Brown, C. A., Hutchinson, R., Boerwinkle, E., â ¦ Genetic Epidemiology Network of Arteriopathy Study. ( 2004 ). Familial aggregation of hypertension treatment and control in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. American Journal of Medicine 116, 676 â 681.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.