Show simple item record

PARPâ 1 regulates DNA repair factor availability

dc.contributor.authorSchiewer, Matthew J
dc.contributor.authorMandigo, Amy C
dc.contributor.authorGordon, Nicolas
dc.contributor.authorHuang, Fangjin
dc.contributor.authorGaur, Sanchaika
dc.contributor.authorLeeuw, Renée
dc.contributor.authorZhao, Shuang G
dc.contributor.authorEvans, Joseph
dc.contributor.authorHan, Sumin
dc.contributor.authorParsons, Theodore
dc.contributor.authorBirbe, Ruth
dc.contributor.authorMcCue, Peter
dc.contributor.authorMcNair, Christopher
dc.contributor.authorChand, Saswati N
dc.contributor.authorCendon‐florez, Ylenia
dc.contributor.authorGallagher, Peter
dc.contributor.authorMcCann, Jennifer J
dc.contributor.authorPoudel Neupane, Neermala
dc.contributor.authorShafi, Ayesha A
dc.contributor.authorDylgjeri, Emanuela
dc.contributor.authorBrand, Lucas J
dc.contributor.authorVisakorpi, Tapio
dc.contributor.authorRaj, Ganesh V
dc.contributor.authorLallas, Costas D
dc.contributor.authorTrabulsi, Edouard J
dc.contributor.authorGomella, Leonard G
dc.contributor.authorDicker, Adam P
dc.contributor.authorKelly, Wm. Kevin
dc.contributor.authorLeiby, Benjamin E
dc.contributor.authorKnudsen, Beatrice
dc.contributor.authorFeng, Felix Y
dc.contributor.authorKnudsen, Karen E
dc.date.accessioned2019-01-15T20:28:42Z
dc.date.available2020-02-03T20:18:24Zen
dc.date.issued2018-12
dc.identifier.citationSchiewer, Matthew J; Mandigo, Amy C; Gordon, Nicolas; Huang, Fangjin; Gaur, Sanchaika; Leeuw, Renée ; Zhao, Shuang G; Evans, Joseph; Han, Sumin; Parsons, Theodore; Birbe, Ruth; McCue, Peter; McNair, Christopher; Chand, Saswati N; Cendon‐florez, Ylenia ; Gallagher, Peter; McCann, Jennifer J; Poudel Neupane, Neermala; Shafi, Ayesha A; Dylgjeri, Emanuela; Brand, Lucas J; Visakorpi, Tapio; Raj, Ganesh V; Lallas, Costas D; Trabulsi, Edouard J; Gomella, Leonard G; Dicker, Adam P; Kelly, Wm. Kevin; Leiby, Benjamin E; Knudsen, Beatrice; Feng, Felix Y; Knudsen, Karen E (2018). "PARPâ 1 regulates DNA repair factor availability." EMBO Molecular Medicine 10(12): n/a-n/a.
dc.identifier.issn1757-4676
dc.identifier.issn1757-4684
dc.identifier.urihttps://hdl.handle.net/2027.42/147045
dc.description.abstractPARPâ 1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARPâ 1 enzymatic activity. Further investigation of the PARPâ 1â regulated transcriptome and secondary strategies for assessing PARPâ 1 activity in patient tissues revealed that PARPâ 1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA doubleâ strand breaks, suggesting that enhanced PARPâ 1 activity may promote aggressive phenotypes. Mechanistic investigation revealed that active PARPâ 1 served to enhance E2F1 transcription factor activity, and specifically promoted E2F1â mediated induction of DNA repair factors involved in homologous recombination (HR). Conversely, PARPâ 1 inhibition reduced HR factor availability and thus acted to induce or enhance â BRCAâ nessâ . These observations bring new understanding of PARPâ 1 function in cancer and have significant ramifications on predicting PARPâ 1 inhibitor function in the clinical setting.SynopsisBy integrating data generated in model systems and human tissues, and in silico analyses of cancer patientâ derived data, this study reveals that PARPâ 1 affects the expression of DNA repair factors through E2F1. Coâ targeting PARPâ 1 and the cell cycle machinery could be a novel treatment strategy.PARPâ 1 enzymatic and transcriptional regulatory functions are elevated as a function of prostate cancer (PCa) progression.PARPâ 1 impacts the transcriptional activity of E2F1, including regulation of cell cycle and DDR gene expression.HR factors are frequently transcriptionally deregulated in PCa, which is enriched in PCa progression.Transcriptional regulation of DNA repair factor expression by PARPâ 1 impacts the response to PARPi.By integrating data generated in model systems and human tissues, and in silico analyses of cancer patientâ derived data, this study reveals that PARPâ 1 affects the expression of DNA repair factors through E2F1. Coâ targeting PARPâ 1 and the cell cycle machinery could be a novel treatment strategy.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherE2F1
dc.subject.otherPARP
dc.subject.othertranscription
dc.subject.otherDNA repair
dc.titlePARPâ 1 regulates DNA repair factor availability
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147045/1/emmm201708816-sup-0001-Appendix.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147045/2/emmm201708816.reviewer_comments.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147045/3/emmm201708816.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147045/4/emmm201708816-sup-0004-SDataFig5.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147045/5/emmm201708816_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147045/6/emmm201708816-sup-0003-SDataFig1.pdf
dc.identifier.doi10.15252/emmm.201708816
dc.identifier.sourceEMBO Molecular Medicine
dc.identifier.citedreferencePeng G, Chunâ Jen Lin C, Mo W, Dai H, Park YY, Kim SM, Peng Y, Mo Q, Siwko S, Hu R et al ( 2014 ) Genomeâ wide transcriptome profiling of homologous recombination DNA repair. Nat Commun 5: 3361
dc.identifier.citedreferenceKondrashova O, Nguyen M, Shieldâ Artin K, Tinker AV, Teng NNH, Harrell MI, Kuiper MJ, Ho GY, Barker H, Jasin M et al ( 2017 ) Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in highâ grade ovarian carcinoma. Cancer Discov 7: 984 â 998
dc.identifier.citedreferenceKraus WL, Lis JT ( 2003 ) PARP goes transcription. Cell 113: 677 â 683
dc.identifier.citedreferenceKrishnakumar R, Kraus WL ( 2010 ) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39: 8 â 24
dc.identifier.citedreferenceKumar A, Coleman I, Morrissey C, Zhang X, True LD, Gulati R, Etzioni R, Bolouri H, Montgomery B, White T et al ( 2016 ) Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med 22: 369 â 378
dc.identifier.citedreferenceKumari A, Iwasaki T, Pyndiah S, Cassimere EK, Palani CD, Sakamuro D ( 2015 ) Regulation of E2F1â induced apoptosis by poly(ADPâ ribosyl)ation. Cell Death Differ 22: 311 â 322
dc.identifier.citedreferenceLapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U et al ( 2004 ) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101: 811 â 816
dc.identifier.citedreferencede Leeuw R, Bermanâ Booty LD, Schiewer MJ, Ciment SJ, Den RB, Dicker AP, Kelly WK, Trabulsi EJ, Lallas CD, Gomella LG et al ( 2015 ) Novel actions of nextâ generation taxanes benefit advanced stages of prostate cancer. Clin Cancer Res 21: 795 â 807
dc.identifier.citedreferenceLeger K, Hopp AK, Fey M, Hottiger MO ( 2016 ) ARTD1 regulates cyclin E expression and consequently cellâ cycle reâ entry and G1/S progression in T24 bladder carcinoma cells. Cell Cycle 15: 2042 â 2052
dc.identifier.citedreferenceLi Z, Yan X, Sun Y, Yang X ( 2016 ) Expression of ADPâ ribosyltransferase 1 is associated with poor prognosis of glioma patients. Tohoku J Exp Med 239: 269 â 278
dc.identifier.citedreferenceLiu L, Zhou W, Cheng CT, Ren X, Somlo G, Fong MY, Chin AR, Li H, Yu Y, Xu Y et al ( 2014 ) TGFbeta induces â BRCAnessâ and sensitivity to PARP inhibition in breast cancer by regulating DNAâ repair genes. Mol Cancer Res 12: 1597 â 1609
dc.identifier.citedreferenceLord CJ, Ashworth A ( 2008 ) Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 8: 363 â 369
dc.identifier.citedreferenceLord CJ, Ashworth A ( 2017 ) PARP inhibitors: synthetic lethality in the clinic. Science 355: 1152 â 1158
dc.identifier.citedreferenceMascolo M, Ilardi G, Romano MF, Celetti A, Siano M, Romano S, Luise C, Merolla F, Rocco A, Vecchione ML et al ( 2012 ) Overexpression of chromatin assembly factorâ 1 p60, poly(ADPâ ribose) polymerase 1 and nestin predicts metastasizing behaviour of oral cancer. Histopathology 61: 1089 â 1105
dc.identifier.citedreferenceMateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perezâ Lopez R, Nava Rodrigues D, Robinson D, Omlin A, Tunariu N et al ( 2015 ) DNAâ repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373: 1697 â 1708
dc.identifier.citedreferenceMcCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O’Connor MJ, Tutt AN, Zdzienicka MZ et al ( 2006 ) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADPâ ribose) polymerase inhibition. Can Res 66: 8109 â 8115
dc.identifier.citedreferenceMirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, Fabbro M, Ledermann JA, Lorusso D, Vergote I et al ( 2016 ) Niraparib maintenance therapy in platinumâ sensitive, recurrent ovarian cancer. N Engl J Med 375: 2154 â 2164
dc.identifier.citedreferenceMootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E et al ( 2003 ) PGCâ 1alphaâ responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34: 267 â 273
dc.identifier.citedreferenceO’Leary B, Finn RS, Turner NC ( 2016 ) Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 13: 417 â 430
dc.identifier.citedreferencePark SH, Jang KY, Kim MJ, Yoon S, Jo Y, Kwon SM, Kim KM, Kwon KS, Kim CY, Woo HG ( 2015 ) Tumor suppressive effect of PARP1 and FOXO3A in gastric cancers and its clinical implications. Oncotarget 6: 44819 â 44831
dc.identifier.citedreferencePishvaian MJ, Biankin AV, Bailey P, Chang DK, Laheru D, Wolfgang CL, Brody JR ( 2017 ) BRCA2 secondary mutationâ mediated resistance to platinum and PARP inhibitorâ based therapy in pancreatic cancer. Br J Cancer 116: 1021 â 1026
dc.identifier.citedreferencePodhorecka M, Skladanowski A, Bozko P ( 2010 ) H2AX phosphorylation: its role in DNA damage response and cancer therapy. J Nucleic Acids 2010: 1 â 9
dc.identifier.citedreferencePoirier GG, de Murcia G, Jongstraâ Bilen J, Niedergang C, Mandel P ( 1982 ) Poly(ADPâ ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc Natl Acad Sci USA 79: 3423 â 3427
dc.identifier.citedreferencePolager S, Ginsberg D ( 2009 ) p53 and E2f: partners in life and death. Nat Rev Cancer 9: 738 â 748
dc.identifier.citedreferencePrensner JR, Chen W, Iyer MK, Cao Q, Ma T, Han S, Sahu A, Malik R, Wilderâ Romans K, Navone N et al ( 2014 ) PCATâ 1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res 74: 1651 â 1660
dc.identifier.citedreferencePritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, Garofalo A, Gulati R, Carreira S, Eeles R et al ( 2016 ) Inherited DNAâ repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375: 443 â 453
dc.identifier.citedreferenceQin G, Kishore R, Dolan CM, Silver M, Wecker A, Luedemann CN, Thorne T, Hanley A, Curry C, Heyd L et al ( 2006 ) Cell cycle regulator E2F1 modulates angiogenesis via p53â dependent transcriptional control of VEGF. Proc Natl Acad Sci USA 103: 11015 â 11020
dc.identifier.citedreferenceQuigley D, Alumkal JJ, Wyatt AW, Kothari V, Foye A, Lloyd P, Aggarwal R, Kim W, Lu E, Schwartzman J et al ( 2017 ) Analysis of circulating cellâ free DNA identifies multiclonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP inhibitors. Cancer Discov 7: 999 â 1005
dc.identifier.citedreferenceRobinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G et al ( 2015 ) Integrative clinical genomics of advanced prostate cancer. Cell 161: 1215 â 1228
dc.identifier.citedreferenceRojo F, Garciaâ Parra J, Zazo S, Tusquets I, Ferrerâ Lozano J, Menendez S, Eroles P, Chamizo C, Servitja S, Ramirezâ Merino N et al ( 2012 ) Nuclear PARPâ 1 protein overexpression is associated with poor overall survival in early breast cancer. Ann Oncol 23: 1156 â 1164
dc.identifier.citedreferenceRountree MR, Bachman KE, Baylin SB ( 2000 ) DNMT1 binds HDAC2 and a new coâ repressor, DMAP1, to form a complex at replication foci. Nat Genet 25: 269 â 277
dc.identifier.citedreferenceSalemi M, Galia A, Fraggetta F, La Corte C, Pepe P, La Vignera S, Improta G, Bosco P, Calogero AE ( 2013 ) Poly (ADPâ ribose) polymerase 1 protein expression in normal and neoplastic prostatic tissue. Eur J Histochem 57: e13
dc.identifier.citedreferenceSandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, Hylands L, Riisnaes R, Forster M, Omlin A et al ( 2013 ) The poly(ADPâ ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 doseâ escalation trial. Lancet Oncol 14: 882 â 892
dc.identifier.citedreferenceSanter FR, Hoschele PP, Oh SJ, Erb HH, Bouchal J, Cavarretta IT, Parson W, Meyers DJ, Cole PA, Culig Z ( 2011 ) Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol Cancer Ther 10: 1644 â 1655
dc.identifier.citedreferenceSchiewer MJ, Goodwin JF, Han S, Brenner JC, Augello MA, Dean JL, Liu F, Planck JL, Ravindranathan P, Chinnaiyan AM et al ( 2012 ) Dual roles of PARPâ 1 promote cancer growth and progression. Cancer Discov 2: 1134 â 1149
dc.identifier.citedreferenceSchiewer MJ, Knudsen KE ( 2014 ) Transcriptional roles of PARP1 in cancer. Mol Cancer Res 12: 1069 â 1080
dc.identifier.citedreferenceSharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C, Morrissey C, Zhang X, Comstock CE, Witkiewicz AK et al ( 2010 ) The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Invest 120: 4478 â 4492
dc.identifier.citedreferenceSimbulanâ Rosenthal CM, Rosenthal DS, Boulares AH, Hickey RJ, Malkas LH, Coll JM, Smulson ME ( 1998 ) Regulation of the expression or recruitment of components of the DNA synthesome by poly(ADPâ ribose) polymerase. Biochemistry 37: 9363 â 9370
dc.identifier.citedreferenceSimbulanâ Rosenthal CM, Rosenthal DS, Luo R, Samara R, Espinoza LA, Hassa PO, Hottiger MO, Smulson ME ( 2003 ) PARPâ 1 binds E2Fâ 1 independently of its DNA binding and catalytic domains, and acts as a novel coactivator of E2Fâ 1â mediated transcription during reâ entry of quiescent cells into S phase. Oncogene 22: 8460 â 8471
dc.identifier.citedreferenceSubramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al ( 2005 ) Gene set enrichment analysis: a knowledgeâ based approach for interpreting genomeâ wide expression profiles. Proc Natl Acad Sci USA 102: 15545 â 15550
dc.identifier.citedreferenceTaylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B et al ( 2010 ) Integrative genomic profiling of human prostate cancer. Cancer Cell 18: 11 â 22
dc.identifier.citedreferenceVeskimae K, Staff S, Gronholm A, Pesu M, Laaksonen M, Nykter M, Isola J, Maenpaa J ( 2016 ) Assessment of PARP protein expression in epithelial ovarian cancer by ELISA pharmacodynamic assay and immunohistochemistry. Tumour Biol 37: 11991 â 11999
dc.identifier.citedreferenceWalter RF, Vollbrecht C, Werner R, Mairinger T, Schmeller J, Flom E, Wohlschlaeger J, Barbetakis N, Paliouras D, Chatzinikolaou F et al ( 2016 ) Screening of pleural mesotheliomas for DNAâ damage repair players by digital gene expression analysis can enhance clinical management of patients receiving platinâ based chemotherapy. J Cancer 7: 1915 â 1925
dc.identifier.citedreferenceWeigelt B, Cominoâ Mendez I, de Bruijn I, Tian L, Meisel JL, Garciaâ Murillas I, Fribbens C, Cutts R, Martelotto LG, Ng CKY et al ( 2017 ) Diverse BRCA1 and BRCA2 reversion mutations in circulating cellâ free DNA of therapyâ resistant breast or ovarian cancer. Clin Cancer Res 23: 6708 â 6720
dc.identifier.citedreferenceWiegmans AP, Yap PY, Ward A, Lim YC, Khanna KK ( 2015 ) Differences in expression of key DNA damage repair genes after epigeneticâ induced BRCAness dictate synthetic lethality with PARP1 inhibition. Mol Cancer Ther 14: 2321 â 2331
dc.identifier.citedreferenceWu W, Zhu H, Liang Y, Kong Z, Duan X, Li S, Zhao Z, Yang D, Zeng G ( 2014 ) Expression of PARPâ 1 and its active polymer PAR in prostate cancer and benign prostatic hyperplasia in Chinese patients. Int Urol Nephrol 46: 1345 â 1349
dc.identifier.citedreferenceYu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL ( 2002 ) Mediation of poly(ADPâ ribose) polymeraseâ 1â dependent cell death by apoptosisâ inducing factor. Science 297: 259 â 263
dc.identifier.citedreferenceYu J, Cao Q, Mehra R, Laxman B, Yu J, Tomlins SA, Creighton CJ, Dhanasekaran SM, Shen R, Chen G et al ( 2007 ) Integrative genomics analysis reveals silencing of betaâ adrenergic signaling by polycomb in prostate cancer. Cancer Cell 12: 419 â 431
dc.identifier.citedreferenceZhai L, Li S, Li H, Zheng Y, Lang R, Fan Y, Gu F, Guo X, Zhang X, Fu L ( 2015 ) Polymorphisms in poly (ADPâ ribose) polymeraseâ 1 (PARP1) promoter and 3â ² untranslated region and their association with PARP1 expression in breast cancer patients. Int J Clin Exp Pathol 8: 7059 â 7071
dc.identifier.citedreferenceZhang T, Berrocal JG, Yao J, DuMond ME, Krishnakumar R, Ruhl DD, Ryu KW, Gamble MJ, Kraus WL ( 2012 ) Regulation of poly(ADPâ ribose) polymeraseâ 1â dependent gene expression through promoterâ directed recruitment of a nuclear NAD + synthase. J Biol Chem 287: 12405 â 12416
dc.identifier.citedreferenceAlla V, Engelmann D, Niemetz A, Pahnke J, Schmidt A, Kunz M, Emmrich S, Steder M, Koczan D, Putzer BM ( 2010 ) E2F1 in melanoma progression and metastasis. J Natl Cancer Inst 102: 127 â 133
dc.identifier.citedreferenceAudeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bellâ McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N et al ( 2010 ) Oral poly(ADPâ ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proofâ ofâ concept trial. Lancet 376: 245 â 251
dc.identifier.citedreferenceBarber LJ, Sandhu S, Chen L, Campbell J, Kozarewa I, Fenwick K, Assiotis I, Rodrigues DN, Reis Filho JS, Moreno V et al ( 2013 ) Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J Pathol 229: 422 â 429
dc.identifier.citedreferenceBeneke S, Cohausz O, Malanga M, Boukamp P, Althaus F, Burkle A ( 2008 ) Rapid regulation of telomere length is mediated by poly(ADPâ ribose) polymeraseâ 1. Nucleic Acids Res 36: 6309 â 6317
dc.identifier.citedreferenceBi FF, Li D, Yang Q ( 2013 ) Hypomethylation of ETS transcription factor binding sites and upregulation of PARP1 expression in endometrial cancer. Biomed Res Int 2013: 946268
dc.identifier.citedreferenceBindra RS, Gibson SL, Meng A, Westermark U, Jasin M, Pierce AJ, Bristow RG, Classon MK, Glazer PM ( 2005 ) Hypoxiaâ induced downâ regulation of BRCA1 expression by E2Fs. Cancer Res 65: 11597 â 11604
dc.identifier.citedreferenceBiswas AK, Johnson DG ( 2012 ) Transcriptional and nontranscriptional functions of E2F1 in response to DNA damage. Cancer Res 72: 13 â 17
dc.identifier.citedreferenceBrenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, Patel S, Wang X, Liang H, Yu J et al ( 2011 ) Mechanistic rationale for inhibition of poly(ADPâ ribose) polymerase in ETS gene fusionâ positive prostate cancer. Cancer Cell 19: 664 â 678
dc.identifier.citedreferenceBryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N, Johansson F, Fernandez S, McGlynn P, Helleday T ( 2009 ) PARP is activated at stalled forks to mediate Mre11â dependent replication restart and recombination. EMBO J 28: 2601 â 2615
dc.identifier.citedreferenceByers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, Yordy J, Giri U, Peyton M, Fan YH, Diao L et al ( 2012 ) Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov 2: 798 â 811
dc.identifier.citedreferenceCancer Genome Atlas Research N ( 2015 ) The molecular taxonomy of primary prostate cancer. Cell 163: 1011 â 1025
dc.identifier.citedreferenceCentenera MM, Gillis JL, Hanson AR, Jindal S, Taylor RA, Risbridger GP, Sutherland PD, Scher HI, Raj GV, Knudsen KE et al ( 2012 ) Evidence for efficacy of new Hsp90 inhibitors revealed by ex vivo culture of human prostate tumors. Clin Cancer Res 18: 3562 â 3570
dc.identifier.citedreferenceCentenera MM, Raj GV, Knudsen KE, Tilley WD, Butler LM ( 2013 ) Ex vivo culture of human prostate tissue and drug development. Nat Rev Urol 10: 483 â 487
dc.identifier.citedreferenceChand SN, Zarei M, Schiewer MJ, Kamath AR, Romeo C, Lal S, Cozzitorto JA, Nevler A, Scolaro L, Londin E et al ( 2017 ) Posttranscriptional regulation of PARG mRNA by HuR facilitates DNA repair and resistance to PARP inhibitors. Cancer Res 77: 5011 â 5025
dc.identifier.citedreferenceChao OS, Goodman OB Jr ( 2014 ) Synergistic loss of prostate cancer cell viability by coinhibition of HDAC and PARP. Mol Cancer Res 12: 1755 â 1766
dc.identifier.citedreferenceChen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J et al ( 2008 ) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133: 1106 â 1117
dc.identifier.citedreferenceChen D, Pacal M, Wenzel P, Knoepfler PS, Leone G, Bremner R ( 2009 ) Division and apoptosis of E2fâ deficient retinal progenitors. Nature 462: 925 â 929
dc.identifier.citedreferenceChristie EL, Fereday S, Doig K, Pattnaik S, Dawson SJ, Bowtell DDL ( 2017 ) Reversion of BRCA1/2 germline mutations detected in circulating tumor DNA from patients with highâ grade serous ovarian cancer. J Clin Oncol 35: 1274 â 1280
dc.identifier.citedreferenceClarke N, Wiechno P, Alekseev B, Sala N, Jones R, Kocak I, Chiuri VE, Jassem J, Flechon A, Redfern C et al ( 2018 ) Olaparib combined with abiraterone in patients with metastatic castrationâ resistant prostate cancer: a randomised, doubleâ blind, placeboâ controlled, phase 2 trial. Lancet Oncol 19: 975 â 986
dc.identifier.citedreferenceColeman RL, Sill MW, Bellâ McGuinn K, Aghajanian C, Gray HJ, Tewari KS, Rubin SC, Rutherford TJ, Chan JK, Chen A et al ( 2015 ) A phase II evaluation of the potent, highly selective PARP inhibitor veliparib in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation â an NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol 137: 386 â 391
dc.identifier.citedreferenceComstock CE, Augello MA, Goodwin JF, de Leeuw R, Schiewer MJ, Ostrander WF Jr, Burkhart RA, McClendon AK, McCue PA, Trabulsi EJ et al ( 2013 ) Targeting cell cycle and hormone receptor pathways in cancer. Oncogene 32: 5481 â 5491
dc.identifier.citedreferenceD’Amours D, Desnoyers S, D’Silva I, Poirier GG ( 1999 ) Poly(ADPâ ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342 ( Pt 2 ): 249 â 268
dc.identifier.citedreferenceDurkacz BW, Omidiji O, Gray DA, Shall S ( 1980 ) (ADPâ ribose)n participates in DNA excision repair. Nature 283: 593 â 596
dc.identifier.citedreferenceDziaman T, Ludwiczak H, Ciesla JM, Banaszkiewicz Z, Winczura A, Chmielarczyk M, Wisniewska E, Marszalek A, Tudek B, Olinski R ( 2014 ) PARPâ 1 expression is increased in colon adenoma and carcinoma and correlates with OGG1. PLoS One 9: e115558
dc.identifier.citedreferenceEdwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, Boyd J, Reisâ Filho JS, Ashworth A ( 2008 ) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451: 1111 â 1115
dc.identifier.citedreferenceFong PC, Boss DS, Yap TA, Tutt A, Wu P, Merguiâ Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ et al ( 2009 ) Inhibition of poly(ADPâ ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361: 123 â 134
dc.identifier.citedreferenceGan A, Green AR, Nolan CC, Martin S, Deen S ( 2013 ) Poly(adenosine diphosphateâ ribose) polymerase expression in BRCAâ proficient ovarian highâ grade serous carcinoma; association with patient survival. Hum Pathol 44: 1638 â 1647
dc.identifier.citedreferenceGartemann A, Bredehorst R, Wielckens K, Stratling WH, Hilz H ( 1981 ) Monoâ and polyâ ADPâ ribosylation of proteins in mouse kidney after castration and testosterone treatment. Biochem J 198: 37 â 44
dc.identifier.citedreferenceGelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, Hirte H, Huntsman D, Clemons M, Gilks B et al ( 2011 ) Olaparib in patients with recurrent highâ grade serous or poorly differentiated ovarian carcinoma or tripleâ negative breast cancer: a phase 2, multicentre, openâ label, nonâ randomised study. Lancet Oncol 12: 852 â 861
dc.identifier.citedreferenceGodoy H, Mhawechâ Fauceglia P, Beck A, Miller A, Lele S, Odunsi K ( 2011 ) Expression of poly (adenosine diphosphateâ ribose) polymerase and p53 in epithelial ovarian cancer and their role in prognosis and disease outcome. Int J Gynecol Pathol 30: 139 â 144
dc.identifier.citedreferenceGogola E, Duarte AA, de Ruiter JR, Wiegant WW, Schmid JA, de Bruijn R, James DI, Guerrero Llobet S, Vis DJ, Annunziato S et al ( 2018 ) Selective loss of PARG restores PARylation and counteracts PARP inhibitorâ mediated synthetic lethality. Cancer Cell 33: 1078 â 1093 e12
dc.identifier.citedreferenceGoodall J, Mateo J, Yuan W, Mossop H, Porta N, Miranda S, Perezâ Lopez R, Dolling D, Robinson DR, Sandhu S et al ( 2017 ) Circulating cellâ free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov 7: 1006 â 1017
dc.identifier.citedreferenceGoodwin JF, Kothari V, Drake JM, Zhao S, Dylgjeri E, Dean JL, Schiewer MJ, McNair C, Jones JK, Aytes A et al ( 2015 ) DNAâ PKcsâ mediated transcriptional regulation drives prostate cancer progression and metastasis. Cancer Cell 28: 97 â 113
dc.identifier.citedreferenceGoto Y, Hayashi R, Kang D, Yoshida K ( 2006 ) Acute loss of transcription factor E2F1 induces mitochondrial biogenesis in HeLa cells. J Cell Physiol 209: 923 â 934
dc.identifier.citedreferenceGrasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC et al ( 2012 ) The mutational landscape of lethal castrationâ resistant prostate cancer. Nature 487: 239 â 243
dc.identifier.citedreferenceHartsough EJ, Kugel CH, Vido MJ, Berger AC, Purwin TJ, Goldberg A, Davies MA, Schiewer MJ, Knudsen KE, Bollag G et al ( 2018 ) Response and resistance to paradox breaking BRAF inhibitor in melanomas in vivo and ex vivo. Mol Cancer Ther 17: 84 â 95
dc.identifier.citedreferenceIanculescu I, Wu DY, Siegmund KD, Stallcup MR ( 2012 ) Selective roles for cAMP response elementâ binding protein binding protein and p300 protein as coregulators for androgenâ regulated gene expression in advanced prostate cancer cells. J Biol Chem 287: 4000 â 4013
dc.identifier.citedreferenceJaspers JE, Kersbergen A, Boon U, Sol W, van Deemter L, Zander SA, Drost R, Wientjens E, Ji J, Aly A et al ( 2013 ) Loss of 53BP1 causes PARP inhibitor resistance in Brca1â mutated mouse mammary tumors. Cancer Discov 3: 68 â 81
dc.identifier.citedreferenceJohnson N, Johnson SF, Yao W, Li YC, Choi YE, Bernhardy AJ, Wang Y, Capelletti M, Sarosiek KA, Moreau LA et al ( 2013 ) Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proc Natl Acad Sci USA 110: 17041 â 17046
dc.identifier.citedreferenceKaye SB, Lubinski J, Matulonis U, Ang JE, Gourley C, Karlan BY, Amnon A, Bellâ McGuinn KM, Chen LM, Friedlander M et al ( 2012 ) Phase II, openâ label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADPâ ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J Clin Oncol 30: 372 â 379
dc.identifier.citedreferenceKim HC, Song JS, Lee JC, Lee DH, Kim SW, Lee JS, Kim WS, Rho JK, Kim SY, Choi CM ( 2014 ) Clinical significance of NQO1 polymorphism and expression of p53, SOD2, PARP1 in limitedâ stage small cell lung cancer. Int J Clin Exp Pathol 7: 6743 â 6751
dc.identifier.citedreferenceKim KM, Moon YJ, Park SH, Park HJ, Wang SI, Park HS, Lee H, Kwon KS, Moon WS, Lee DG et al ( 2016 ) Individual and combined expression of DNA damage response molecules PARP1, gammaH2AX, BRCA1, and BRCA2 predict shorter survival of soft tissue sarcoma patients. PLoS One 11: e0163193
dc.identifier.citedreferenceKnudsen KE, Arden KC, Cavenee WK ( 1998 ) Multiple G1 regulatory elements control the androgenâ dependent proliferation of prostatic carcinoma cells. J Biol Chem 273: 20213 â 20222
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.