Evaluating consumptive and nonconsumptive predator effects on prey density using field time‐series data
dc.contributor.author | Marino, J. A. | |
dc.contributor.author | Peacor, S. D. | |
dc.contributor.author | Bunnell, D. B. | |
dc.contributor.author | Vanderploeg, H. A. | |
dc.contributor.author | Pothoven, S. A. | |
dc.contributor.author | Elgin, A. K. | |
dc.contributor.author | Bence, J. R. | |
dc.contributor.author | Jiao, J. | |
dc.contributor.author | Ionides, E. L. | |
dc.date.accessioned | 2019-03-11T15:35:29Z | |
dc.date.available | 2020-05-01T18:03:26Z | en |
dc.date.issued | 2019-03 | |
dc.identifier.citation | Marino, J. A.; Peacor, S. D.; Bunnell, D. B.; Vanderploeg, H. A.; Pothoven, S. A.; Elgin, A. K.; Bence, J. R.; Jiao, J.; Ionides, E. L. (2019). "Evaluating consumptive and nonconsumptive predator effects on prey density using field time‐series data." Ecology 100(3): n/a-n/a. | |
dc.identifier.issn | 0012-9658 | |
dc.identifier.issn | 1939-9170 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/148243 | |
dc.description.abstract | Determining the degree to which predation affects prey abundance in natural communities constitutes a key goal of ecological research. Predators can affect prey through both consumptive effects (CEs) and nonconsumptive effects (NCEs), although the contributions of each mechanism to the density of prey populations remain largely hypothetical in most systems. Common statistical methods applied to time‐series data cannot elucidate the mechanisms responsible for hypothesized predator effects on prey density (e.g., differentiate CEs from NCEs), nor can they provide parameters for predictive models. State‐space models (SSMs) applied to time‐series data offer a way to meet these goals. Here, we employ SSMs to assess effects of an invasive predatory zooplankter, Bythotrephes longimanus, on an important prey species, Daphnia mendotae, in Lake Michigan. We fit mechanistic models in an SSM framework to seasonal time series (1994–2012) using a recently developed, maximum‐likelihood–based optimization method, iterated filtering, which can overcome challenges in ecological data (e.g., nonlinearities, measurement error, and irregular sampling intervals). Our results indicate that B. longimanus strongly influences D. mendotae dynamics, with mean annual peak densities of B. longimanus observed in Lake Michigan estimated to cause a 61% reduction in D. mendotae population growth rate and a 59% reduction in peak biomass density. Further, the observed B. longimanus effect is most consistent with an NCE via reduced birth rates. The SSM approach also provided estimates for key biological parameters (e.g., demographic rates) and the contribution of dynamic stochasticity and measurement error. Our study therefore provides evidence derived directly from survey data that the invasive zooplankter B. longimanus is affecting zooplankton demographics and offer parameter estimates needed to inform predictive models that explore the effect of B. longimanus under different scenarios, such as climate change. | |
dc.publisher | Springer‐Verlag | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | predator–prey interaction | |
dc.subject.other | Bythotrephes longimanus | |
dc.subject.other | iterated filtering | |
dc.subject.other | Laurentian Great Lakes | |
dc.subject.other | nonconsumptive effects | |
dc.subject.other | Daphnia mendotae | |
dc.title | Evaluating consumptive and nonconsumptive predator effects on prey density using field time‐series data | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/148243/1/ecy2583-sup-0001-AppendixS1.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/148243/2/ecy2583_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/148243/3/ecy2583.pdf | |
dc.identifier.doi | 10.1002/ecy.2583 | |
dc.identifier.source | Ecology | |
dc.identifier.citedreference | Newman, K., S. T. Buckland, B. Morgan, R. King, D. L. Borchers, D. Cole, P. Besbeas, O. Gimenez, and L. Thomas. 2014. Modelling population dynamics: model formulation, fitting and assessment using state‐space methods. Springer‐Verlag, New York, New York, USA. | |
dc.identifier.citedreference | Fahnenstiel, G., T. Nalepa, S. Pothoven, H. Carrick, and D. Scavia. 2010. Lake Michigan lower food web: long‐term observations and Dreissena impact. Journal of Great Lakes Research 36: 1 – 4. | |
dc.identifier.citedreference | Heithaus, M. R., A. J. Wirsing, D. Burkholder, J. Thomson, and L. M. Dill. 2009. Towards a predictive framework for predator risk effects: the interaction of landscape features and prey escape tactics. Journal of Animal Ecology 78: 556 – 562. | |
dc.identifier.citedreference | Hilborn, R., and M. Mangel. 1997. The ecological detective: confronting models with data. Princeton University Press, Princeton, New Jersey, USA. | |
dc.identifier.citedreference | Ionides, E. L., C. Breto, and A. A. King. 2006. Inference for nonlinear dynamical systems. Proceedings of the National Academy of Sciences USA 103: 18438 – 18443. | |
dc.identifier.citedreference | Ionides, E. L., D. Nguyen, Y. Atchade, S. Stoev, and A. A. King. 2015. Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. Proceedings of the National Academy of Sciences USA 112: 719 – 724. | |
dc.identifier.citedreference | Jacobs, G. R., C. P. Madenjian, D. B. Bunnell, D. M. Warner, and R. M. Claramunt. 2013. Chinook salmon foraging patterns in a changing Lake Michigan. Transactions of the American Fisheries Society 142: 362 – 372. | |
dc.identifier.citedreference | Keeler, K. M., D. B. Bunnell, J. S. Diana, J. V. Adams, J. G. Mychek‐Londer, D. M. Warner, D. L. Yule, and M. R. Vinson. 2015. Evaluating the importance of abiotic and biotic drivers on Bythotrephes biomass in Lakes Superior and Michigan. Journal of Great Lakes Research 41: 150 – 160. | |
dc.identifier.citedreference | Kerfoot, W. C., J. W. Budd, B. J. Eadie, H. A. Vanderploeg, and M. Agy. 2004. Winter storms: sequential sediment traps record Daphnia ephippial production, resuspension, and sediment interactions. Limnology and Oceanography 49: 1365 – 1381. | |
dc.identifier.citedreference | Kim, N., and N. D. Yan. 2010. Methods for rearing the invasive zooplankter Bythotrephes in the laboratory. Limnology and Oceanography: Methods 8: 552 – 561. | |
dc.identifier.citedreference | Kimbro, D. L., J. H. Grabowski, A. R. Hughes, M. F. Piehler, and J. W. White. 2017. Nonconsumptive effects of a predator weaken then rebound over time. Ecology 98: 656 – 667. | |
dc.identifier.citedreference | King, A. A., E. L. Ionides, M. Pascual, and M. J. Bouma. 2008. Inapparent infections and cholera dynamics. Nature 454: 877 – 880. | |
dc.identifier.citedreference | King, A. A., D. Nguyen, and E. L. Ionides. 2016. Statistical inference for partially observed Markov processes via the R package pomp. Journal of Statistical Software. http://dx.doi.org/10.18637/jss.v069.i12. | |
dc.identifier.citedreference | Lehman, J. T., and C. A. Caceres. 1993. Food‐web responses to species invasion by a predator invertebrate: Bythotrephes in Lake Michigan. Limnology and Oceanography 38: 879 – 891. | |
dc.identifier.citedreference | Martinez‐Bakker, M., A. A. King, and P. Rohani. 2015. Unraveling the transmission ecology of polio. PLOS Biology 13: e1002172. | |
dc.identifier.citedreference | Matassa, C. M., and G. C. Trussell. 2011. Landscape of fear influences the relative importance of consumptive and nonconsumptive predator effects. Ecology 92: 2258 – 2266. | |
dc.identifier.citedreference | Nelson, E. H., C. E. Matthews, and J. A. Rosenheim. 2004. Predators reduce prey population growth by inducing changes in prey behavior. Ecology 85: 1853 – 1858. | |
dc.identifier.citedreference | Nowicki, C. J., D. B. Bunnell, P. M. Armenio, D. M. Warner, H. A. Vanderploeg, J. F. Cavaletto, C. M. Mayer, and J. V. Adams. 2017. Biotic and abiotic factors influencing zooplankton vertical distribution in Lake Huron. Journal of Great Lakes Research 43: 1044 – 1054. | |
dc.identifier.citedreference | Pangle, K. L., and S. D. Peacor. 2006. Non‐lethal effect of the invasive predator Bythotrephes longimanus on Daphnia mendotae. Freshwater Biology 51: 1070 – 1078. | |
dc.identifier.citedreference | Pangle, K. L., and S. D. Peacor. 2009. Light‐dependent predation by the invertebrate planktivore Bythotrephes longimanus. Canadian Journal of Fisheries and Aquatic Sciences 66: 1748 – 1757. | |
dc.identifier.citedreference | Pangle, K. L., S. D. Peacor, and O. E. Johannsson. 2007. Large nonlethal effects of an invasive invertebrate predator on zooplankton population growth rate. Ecology 88: 402 – 412. | |
dc.identifier.citedreference | Panik, M. J. 2017. Stochastic population growth models. Pages 167 – 191 in M. J. Panik, editor. Stochastic differential equations. John Wiley & Sons, Inc., Hoboken, New Jersey, USA. | |
dc.identifier.citedreference | Peckarsky, B. L., et al. 2008. Revisiting the classics: considering nonconsumptive effects in textbook examples of predator–prey interactions. Ecology 89: 2416 – 2425. | |
dc.identifier.citedreference | R Development Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.r-project.org | |
dc.identifier.citedreference | Scheffer, M., D. Straile, E. H. van Nes, and H. Hosper. 2001. Climatic warming causes regime shifts in lake food webs. Limnology and Oceanography 46: 1780 – 1783. | |
dc.identifier.citedreference | Turchin, P., and A. Taylor. 1992. Complex dynamics in ecological time‐series. Ecology 73: 289 – 305. | |
dc.identifier.citedreference | van de Pol, M., L. D. Bailey, N. McLean, L. Rijsdijk, C. R. Lawson, and L. Brouwer. 2016. Identifying the best climatic predictors in ecology and evolution. Methods in Ecology and Evolution 7: 1246 – 1257. | |
dc.identifier.citedreference | Vanderploeg, H., J. Liebig, and M. Omair. 1993. Bythotrephes predation on Great Lakes zooplankton measured by an in situ method—implications for zooplankton community structure. Archiv Fur Hydrobiologie 127: 1 – 8. | |
dc.identifier.citedreference | Vanderploeg, H. A., S. A. Pothoven, G. L. Fahnenstiel, J. F. Cavaletto, J. R. Liebig, C. A. Stow, T. F. Nalepa, C. P. Madenjian, and D. B. Bunnell. 2012. Seasonal zooplankton dynamics in Lake Michigan: disentangling impacts of resource limitation, ecosystem engineering, and predation during a critical ecosystem transition. Journal of Great Lakes Research 38: 336 – 352. | |
dc.identifier.citedreference | Yurista, P. M., H. A. Vanderploeg, J. R. Liebig, and J. F. Cavaletto. 2010. Lake Michigan Bythotrephes prey consumption estimates for 1994–2003 using a temperature and size corrected bioenergetic model. Journal of Great Lakes Research 36: 74 – 82. | |
dc.identifier.citedreference | Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716 – 723. | |
dc.identifier.citedreference | Barbiero, R. P., and M. L. Tuchman. 2004. Changes in the crustacean communities of Lakes Michigan, Huron, and Erie following the invasion of the predatory cladoceran Bythotrephes longimanus. Canadian Journal of Fisheries and Aquatic Sciences 61: 2111 – 2125. | |
dc.identifier.citedreference | Beaugrand, G., K. M. Brander, J. A. Lindley, S. Souissi, and P. C. Reid. 2003. Plankton effect on cod recruitment in the North Sea. Nature 426: 661 – 664. | |
dc.identifier.citedreference | Bjornstad, O., and B. Grenfell. 2001. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293: 638 – 643. | |
dc.identifier.citedreference | Bourdeau, P. E., K. L. Pangle, and S. D. Peacor. 2011. The invasive predator Bythotrephes induces changes in the vertical distribution of native copepods in Lake Michigan. Biological Invasions 13: 2533 – 2545. | |
dc.identifier.citedreference | Bourdeau, P. E., K. L. Pangle, E. M. Reed, and S. D. Peacor. 2013. Finely tuned response of native prey to an invasive predator in a freshwater system. Ecology 94: 1449 – 1455. | |
dc.identifier.citedreference | Bourdeau, P. E., K. L. Pangle, and S. D. Peacor. 2015. Factors affecting the vertical distribution of the zooplankton assemblage in Lake Michigan: the role of the invasive predator Bythotrephes longimanus. Journal of Great Lakes Research 41: 115 – 124. | |
dc.identifier.citedreference | Breto, C., D. H. He, E. L. Ionides, and A. A. King. 2009. Time series analysis in mechanistic models. Annals of Applied Statistics 3: 319 – 348. | |
dc.identifier.citedreference | Bunnell, D. B., B. M. Davis, D. M. Warner, M. A. Chriscinske, and E. F. Roseman. 2011. Planktivory in the changing Lake Huron zooplankton community: Bythotrephes consumption exceeds that of Mysis and fish. Freshwater Biology 56: 1281 – 1296. | |
dc.identifier.citedreference | Bunnell, D. B., et al. 2014. Changing ecosystem dynamics in the Laurentian Great Lakes: bottom‐up and top‐down regulation. BioScience 64: 26 – 39. | |
dc.identifier.citedreference | Bunnell, D. B., B. M. Davis, M. A. Chriscinske, K. M. Keeler, and J. G. Mychek‐Londer. 2015. Diet shifts by planktivorous and benthivorous fishes in northern Lake Michigan in response to ecosystem changes. Journal of Great Lakes Research 41: 161 – 171. | |
dc.identifier.citedreference | Burnham, K. P., and D. A. Anderson. 2002. Model selection and multimodel inference: a practical information‐theoretic approach. Springer‐Verlag, New York, New York, USA. | |
dc.identifier.citedreference | Caceres, C. E. 1998. Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology 79: 1699 – 1710. | |
dc.identifier.citedreference | Creel, S., J. Winnie, B. Maxwell, K. Hamlin, and M. Creel. 2005. Elk alter habitat selection as an antipredator response to wolves. Ecology 86: 3387 – 3397. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.