Show simple item record

Machine learning for automated quality assurance in radiotherapy: A proof of principle using EPID data description

dc.contributor.authorEl Naqa, Issam
dc.contributor.authorIrrer, Jim
dc.contributor.authorRitter, Tim A.
dc.contributor.authorDeMarco, John
dc.contributor.authorAl‐hallaq, Hania
dc.contributor.authorBooth, Jeremy
dc.contributor.authorKim, Grace
dc.contributor.authorAlkhatib, Ahmad
dc.contributor.authorPopple, Richard
dc.contributor.authorPerez, Mario
dc.contributor.authorFarrey, Karl
dc.contributor.authorMoran, Jean M.
dc.date.accessioned2019-05-31T18:27:29Z
dc.date.available2020-06-01T14:50:01Zen
dc.date.issued2019-04
dc.identifier.citationEl Naqa, Issam; Irrer, Jim; Ritter, Tim A.; DeMarco, John; Al‐hallaq, Hania ; Booth, Jeremy; Kim, Grace; Alkhatib, Ahmad; Popple, Richard; Perez, Mario; Farrey, Karl; Moran, Jean M. (2019). " Machine learning for automated quality assurance in radiotherapy: A proof of principle using EPID data description." Medical Physics 46(4): 1914-1921.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/149320
dc.publisherWiley Periodicals, Inc.
dc.publisherThe New York Times
dc.subject.otherLinacs
dc.subject.otherquality assurance
dc.subject.otherSVM
dc.subject.otherhigher dimension visualization
dc.subject.othermachine learning
dc.titleMachine learning for automated quality assurance in radiotherapy: A proof of principle using EPID data description
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149320/1/mp13433_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149320/2/mp13433.pdf
dc.identifier.doi10.1002/mp.13433
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceJaewook L, Daewon L. An improved cluster labeling method for support vector clustering. IEEE Trans Patt Anal Mach Intell. 2005; 27: 461 â 464.
dc.identifier.citedreferencePotters L, Ford E, Evans S, et al. A systems approach using big data to improve safety and quality in radiation oncology. Int J Radiat Oncol Biol Phys. 2016; 95: 885 â 889.
dc.identifier.citedreferenceEl Naqa I. Biomedical informatics and panomics for evidenceâ based radiation therapy. Wiley Interdisc Rev. 2014; 4: 327 â 340.
dc.identifier.citedreferenceEl Naqa I. The role of big data in radiation oncology: challenges and potentials. In: Wang B, Li R, Perrizo W, eds. Big Data Analytics in Bioinformatics and Healthcare. Hershey, PA: IGI Global; 2014: 163 â 185.
dc.identifier.citedreferencePawlicki T, Yoo S, Court LE, et al. Process control analysis of IMRT QA: implications for clinical trials. Phys Med Biol. 2008; 53: 5193 â 5205.
dc.identifier.citedreferenceEl Naqa I, Li R, Murphy MJ. Machine Learning in Radiation Oncology: Theory and Application. Switzerland: Springer International Publishing; 2015.
dc.identifier.citedreferenceFatemeh A, David K, Jennifer GD, et al. Towards the development of an error checker for radiotherapy treatment plans: a preliminary study. Phys Med Biol. 2007; 52: 6511.
dc.identifier.citedreferenceWilloughby TR, Starkschall G, Janjan NA, et al. Evaluation and scoring of radiotherapy treatment plans using an artificial neural network. Int J Radiat Oncol Biol Phys. 1996; 34: 923 â 930.
dc.identifier.citedreferenceAlan MK, John HG, Eric CF, et al. Bayesian network models for error detection in radiotherapy plans. Phys Med Biol. 2015; 60: 2735.
dc.identifier.citedreferenceBrown WE, Sung K, Aleman DM, et al. Guided undersampling classification for automated radiation therapy quality assurance of prostate cancer treatment. Med Phys. 2018; 45: 1306 â 1316.
dc.identifier.citedreferenceEl Naqa I. Detection and prediction of radiotherapy errors. In: El Naqa I, Li R, Murphy MJ, eds. Machine Learning in Radiation Oncology: Theory and Applications, vol. 1. Switzerland: Springer; 2015: 237 â 241.
dc.identifier.citedreferenceValdes G, Chan MF, Lim SB, et al. Imrt qa using machine learning: a multiâ institutional validation. J Appl Clin Med Phys. 2017; 18: 279 â 284.
dc.identifier.citedreferenceValdes G, Scheuermann R, Hung CY, et al. A mathematical framework for virtual IMRT QA using machine learning. Med Phys. 2016; 43: 4323 â 4334.
dc.identifier.citedreferenceLi Q, Chan MF. Predictive timeâ series modeling using artificial neural networks for linac beam symmetry: an empirical study. Ann NY Acad Sci. 2017; 1387: 84 â 94.
dc.identifier.citedreferenceJoel NKC, Jong Min P, Soâ Yeon P, et al. A machine learning approach to the accurate prediction of multiâ leaf collimator positional errors. Phys Med Biol. 2016; 61: 2514.
dc.identifier.citedreferenceEckhause T, Alâ Hallaq H, Ritter T, et al. Automating linear accelerator quality assurance. Med Phys. 2015; 42: 6074 â 6083.
dc.identifier.citedreferenceRitter TA, Schultz B, Barnes M, et al. Automated EPIDâ based measurement of MLC leaf offset as a quality control tool. Biomed Phys Eng Expr. 2018; 4: 027008.
dc.identifier.citedreferenceTax DMJ, Duin RPW. Support vector data description. Mach Learn. 2004; 54: 45 â 66.
dc.identifier.citedreferenceBenâ Hur A, Horn D, Siegelmann HT, et al. Support vector clustering. J Mach Learn Res. 2002; 2: 125 â 137.
dc.identifier.citedreferenceLee J, Lee D. Dynamic characterization of cluster structures for robust and inductive support vector clustering. IEEE Trans Patt Anal Mach Intell. 2006; 28: 1869 â 1874.
dc.identifier.citedreferenceLei B, Xu G, Feng M, et al. Classification, parameter estimation and state estimation: an engineering approach using MATLAB. Hoboken, NJ: John Wiley & Sons; 2017.
dc.identifier.citedreferenceDu W, Gao S, Wang X, et al. Quantifying the gantry sag on linear accelerators and introducing an MLCâ based compensation strategy. Med Phys. 2012; 39: 2156 â 2162.
dc.identifier.citedreferenceTheissler A, Dear I. Autonomously. Int J Comput Inform Eng. 2013; 7: 949 â 957.
dc.identifier.citedreferenceRekha AG, Abdulla MS, Asharaf S. Lightly trained support vector data description for novelty detection. Expert Syst Appl. 2017; 85: 25 â 32.
dc.identifier.citedreferenceOh JH, Naqa IE, Yang Y. Online learning of relevance feedback from expert readers for mammogram retrieval. In: Proceedings of the 43rd Asilomar conference on Signals, systems and computers. Pacific Grove, California, USA: IEEE Press; 2009:17â 21.
dc.identifier.citedreferenceXie W, Uhlmann S, Kiranyaz S, et al. Incremental learning with support vector data description. In: 2014 22nd International Conference on Pattern Recognition; 2014:3904â 3909.
dc.identifier.citedreferenceSanghangthum T, Suriyapee S, Kim GY, et al. A method of setting limits for the purpose of quality assurance. Phys Med Biol. 2013; 58: 7025 â 7037.
dc.identifier.citedreferenceAgnew A, Agnew CE, Grattan MW, et al. Monitoring daily MLC positional errors using trajectory log files and EPID measurements for IMRT and VMAT deliveries. Phys Med Biol. 2014; 59: N49 â N63.
dc.identifier.citedreferenceKruse JJ. On the insensitivity of single field planar dosimetry to IMRT inaccuracies. Med Phys. 2010; 37: 2516 â 2524.
dc.identifier.citedreferenceSteers JM, Fraass BA. IMRT QA: selecting gamma criteria based on error detection sensitivity. Med Phys. 2016; 43: 1982 â 1994.
dc.identifier.citedreferenceChaudhuri A, Kakde D, Jahja M, et al. Sampling method for fast training of support vector data description. In: 2018 Annual Reliability and Maintainability Symposium (RAMS); 2018:1â 7.
dc.identifier.citedreferenceCao J, Zhang L, Wang B, et al. A fast gene selection method for multiâ cancer classification using multiple support vector data description. J Biomed Inform. 2015; 53: 381 â 389.
dc.identifier.citedreferenceBogdanich W. Radiation Offers New Cures, and Ways To Do Harm The New York Times. New York, NY: The New York Times, 2010.
dc.identifier.citedreferenceKutcher GJ, Coia L, Gillin M, et al. Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40. Med Phys. 1994; 21: 581 â 618.
dc.identifier.citedreferenceKlein EE, Hanley J, Bayouth J, et al. Task group 142 report: quality assurance of medical accelerators. Med Phys. 2009; 36: 4197 â 4212.
dc.identifier.citedreferenceSmith K, Balter P, Duhon J, et al. AAPM medical physics practice guideline 8.A.: linear accelerator performance tests. J Appl Clin Med Phys. 2017; 18: 23 â 39.
dc.identifier.citedreferenceFollowill DS, Urie M, Galvin JM, et al. Credentialing for participation in clinical trials. Front Oncol. 2012; 2: 198.
dc.identifier.citedreferenceHartford AC, Galvin JM, Beyer DC, et al. American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) practice guideline for Intensityâ Modulated Radiation Therapy (IMRT). Am J Clin Oncol. 2012; 35: 612 â 617.
dc.identifier.citedreferenceFitzgerald TJ, Bishopâ Jodoin M, Bosch WR, et al. Future vision for the quality assurance of oncology clinical trials. Front Oncol. 2013; 3: 31.
dc.identifier.citedreferenceMoran JM, Molineu A, Kruse JJ, et al. Executive summary of AAPM Report Task Group 113: guidance for the physics aspects of clinical trials. J Appl Clin Med Phys. 2018; 19: 335 â 346.
dc.identifier.citedreferenceHuq MS, Fraass BA, Dunscombe PB, et al. The Report of Task Group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys. 2016; 43: 4209 â 4262.
dc.identifier.citedreferenceFord EC, Evans S. Incident learning in radiation oncology: a review. Med Phys. 2018; 45: e100 â e119.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.