Show simple item record

Segmentation of SED by Boundary Flows Associated With Westward Drifting Partial Ring current

dc.contributor.authorWang, Zihan
dc.contributor.authorZou, Shasha
dc.contributor.authorCoppeans, Thomas
dc.contributor.authorRen, Jiaen
dc.contributor.authorRidley, Aaron
dc.contributor.authorGombosi, Tamas
dc.date.accessioned2019-09-30T15:30:15Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-09-30T15:30:15Z
dc.date.issued2019-07-28
dc.identifier.citationWang, Zihan; Zou, Shasha; Coppeans, Thomas; Ren, Jiaen; Ridley, Aaron; Gombosi, Tamas (2019). "Segmentation of SED by Boundary Flows Associated With Westward Drifting Partial Ring current." Geophysical Research Letters 46(14): 7920-7928.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/151263
dc.description.abstractThe segmentation mechanism of polar cap patches is agreed to be related to temporal changes of interplanetary magnetic field or transient reconnection. In this letter, using Global Ionosphere Thermosphere Model driven by two‐way coupled Block‐Adaptive‐Tree‐Solarwind‐Roe‐Upwind‐Scheme and Rice Convection Model, a new segmentation mechanism is proposed. This mechanism works as follows: A strong boundary flow between the Region 1 and Region 2 field‐aligned currents develops, while a shielding process develops in the inner magnetosphere. As the partial ring current drifts westward, the peak of the boundary flow also moves westward. This strong boundary flow raises the ion temperature through enhanced frictional heating, enhances the chemical recombination reaction rate, and reduces the electron density. When this boundary flow crosses the storm‐enhanced density (SED) plume, the plume will be segmented into patches. No external interplanetary magnetic field variations or transient reconnections are required in this mechanism.Key PointsBoundary flows between Region 1 and Region 2 FACs segment SED plume into patchesLocalized plasma loss is due to enhanced frictional heating within boundary flowsNo external IMF direction change is needed in this segmentation scenario
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpolar cap patch
dc.subject.otherpartial ring current
dc.subject.otherBirkeland current boundary flow
dc.titleSegmentation of SED by Boundary Flows Associated With Westward Drifting Partial Ring current
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151263/1/grl59354.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151263/2/grl59354-sup-0006-Text_SI-S01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151263/3/grl59354_am.pdf
dc.identifier.doi10.1029/2019GL084041
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceValladares, C. E., Basu, S., Buchau, J., & Friis‐Christensen, E. ( 1994 ). Experimental evidence for the formation and entry of patches into the polar cap. Radio Science, 29 ( 1 ), 167 – 194. https://doi.org/10.1029/93RS01579
dc.identifier.citedreferenceMoen, J., Carlson, H. C., Oksavik, K., Nielsen, C. P., Pryse, S. E., Middleton, H. R., & Gallop, P. ( 2006 ). EISCAT observations of plasma patches at sub‐auroral cusp latitudes. Annales Geophysicae, 24 ( 9 ), 2363 – 2374. https://doi.org/10.5194/angeo-24-2363-2006
dc.identifier.citedreferenceOgawa, T., Buchert, S. C., Nishitani, N., Sato, N., & Lester, M. ( 2001 ). Plasma density suppression process around the cusp revealed by simultaneous CUTLASS and EISCAT Svalbard radar observations. Journal of Geophysical Research, 106 ( A4 ), 5551 – 5564. https://doi.org/10.1029/2000JA900111
dc.identifier.citedreferenceOksavik, K., Greenwald, R. A., Ruohoniemi, J. M., Hairston, M. R., Paxton, L. J., Baker, J. B. H., & Barnes, R. J. ( 2006 ). First observations of the temporal/spatial variation of the sub‐auroral polarization stream from the SuperDARN Wallops HF radar. Geophysical Research Letters, 33, L12104. https://doi.org/10.1029/2006GL026256
dc.identifier.citedreferenceØstgaard, N., Vondrak, R. R., Gjerloev, J. W., & Germany, G. ( 2002 ). A relation between the energy deposition by electron precipitation and geomagnetic indices during substorms. Journal of Geophysical Research, 107 ( A9 ), 1246. https://doi.org/10.1029/2001JA002003
dc.identifier.citedreferencePinnock, M., Rodger, A. S., Dudeney, J. R., Baker, K. B., Newell, P. T., Greenwald, R. A., & Greenspan, M. E. ( 1993 ). Observations of an enhanced convection channel in the cusp ionosphere. Journal of Geophysical Research, 98 ( A3 ), 3767 – 3776. https://doi.org/10.1029/92ja01382
dc.identifier.citedreferenceRen, J., Zou, S., Gillies, R. G., Donovan, E., & Varney, R. H. ( 2018 ). Statistical characteristics of polar cap patches observed by RISR‐C. Journal of Geophysical Research: Space Physics, 123, 6981 – 6995. https://doi.org/10.1029/2018JA025621
dc.identifier.citedreferenceRidley, A. J., Deng, Y., & Tóth, G. ( 2006 ). The global ionosphere‐thermosphere model. Journal of Atmospheric and Solar‐Terrestrial Physics, 68 ( 8 ), 839 – 864. https://doi.org/10.1016/j.jastp.2006.01.008
dc.identifier.citedreferenceRodger, A. S., Pinnock, M., Dudeney, J. R., Baker, K. B., & Greenwald, R. A. ( 1994 ). A new mechanism for polar patch formation. Journal of Geophysical Research, 99 ( A4 ), 6425 – 6436. https://doi.org/10.1029/93JA01501
dc.identifier.citedreferenceShen, C., Luo, B., Chi, Y., Xu, M., & Wang, Y. ( 2018 ). Why the shock‐ICME complex structure is important: Learning from the early 2017 September CMEs. The Astrophysical Journal, 861 ( 1 ), 28. https://doi.org/10.3847/1538-4357/aac204
dc.identifier.citedreferenceSojka, J. J., Bowline, M. D., Schunk, R. W., Decker, D. T., Valladares, C. E., Sheehan, R., & Heelis, R. A. ( 1993 ). Modeling polar cap F ‐region patches using time varying convection. Geophysical Research Letters, 20 ( 17 ), 1783 – 1786. https://doi.org/10.1029/93GL01347
dc.identifier.citedreferenceSt.‐Maurice, J. P., & Torr, D. G. ( 1978 ). Nonthermal rate coefficients in the ionosphere: The reactions of O + with N 2, O 2, and NO. Journal of Geophysical Research, 83 ( A12 ), 5779. https://doi.org/10.1029/ja083ia12p05779
dc.identifier.citedreferenceTóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R., De Zeeuw, D. L., & Kóta, J. ( 2005 ). Space Weather Modeling Framework: A new tool for the space science community. Journal of Geophysical Research, 110, A12226. https://doi.org/10.1029/2005JA011126
dc.identifier.citedreferenceTóth, G., Van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., Manchester, W. B., Meng, X., Najib, D., Powell, K. G., Stout, Q. F., Glocer, A., Ma, Y.‐J., & Opher, M. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903.
dc.identifier.citedreferenceValladares, C. E., Decker, D. T., Sheehan, R., & Anderson, D. N. ( 1996 ). Modeling the formation of polar cap patches using large plasma flows. Radio Science, 31 ( 3 ), 573 – 593. https://doi.org/10.1029/96RS00481
dc.identifier.citedreferenceVasyliunas, V. ( 1970 ). Mathematical models of magnetospheric convection and its coupling to the ionosphere (Vol.  17 ). Dordrecht: Springer.
dc.identifier.citedreferenceWalker, I. K., Moen, J., Kersley, L., & Lorentzen, D. A. ( 1999 ). On the possible role of cusp/cleft precipitation in the formation of polar‐cap patches. Annales Geophysicae, 17 ( 10 ), 1298 – 1305. https://doi.org/10.1007/s00585-999-1298-4
dc.identifier.citedreferenceWei, D., Yu, Y., & He, F. ( 2019 ). The magnetospheric driving source of double‐peak subauroral ion drifts (DSAIDs): Double ring current pressure peaks. Geophysical Research Letters. https://doi.org/10.1029/2019GL083186
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research, 110, A05306. https://doi.org/10.1029/2004JA010884
dc.identifier.citedreferenceWolf, R. A., Spiro, R. W., Sazykin, S., & Toffoletto, F. R. ( 2007 ). How the Earth’s inner magnetosphere works: An evolving picture. Journal of Atmospheric and Solar‐Terrestrial Physics, 69 ( 3 ), 288 – 302. https://doi.org/10.1016/j.jastp.2006.07.026
dc.identifier.citedreferenceZhang, Q. H., Moen, J., Lockwood, M., McCrea, I. W., Zhang, B. C., McWilliams, K. A., & Lester, M. ( 2016 ). Polar cap patch transportation beyond the classic scenario. Journal of Geophysical Research: Space Physics, 121, 9063 – 9074. https://doi.org/10.1002/2016JA022443
dc.identifier.citedreferenceZhang, Q. H., Zhang, B. C., Liu, R. Y., Dunlop, M. W., Lockwood, M., Moen, J., & Lester, M. ( 2011 ). On the importance of interplanetary magnetic field By on polar cap patch formation. Journal of Geophysical Research, 116, A05308. https://doi.org/10.1029/2010JA016287
dc.identifier.citedreferenceZhang, Q. H., Zhang, B. C., Moen, J., Lockwood, M., McCrea, I. W., Yang, H. G., & Lester, M. ( 2013 ). Polar cap patch segmentation of the tongue of ionization in the morning convection cell. Geophysical Research Letters, 40, 2918 – 2922. https://doi.org/10.1002/grl.50616
dc.identifier.citedreferenceZou, S., Moldwin, M. B., Ridley, A. J., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2014 ). On the generation/decay of the storm‐enhanced density plumes: Role of the convection flow and field‐aligned ion flow. Journal of Geophysical Research: Space Physics, 119, 8543 – 8559. https://doi.org/10.1002/2014JA020408
dc.identifier.citedreferenceZou, S., Ridley, A. J., Moldwin, M. B., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2013 ). Multi‐instrument observations of SED during 24–25 October 2011 storm: Implications for SED formation processes. Journal of Geophysical Research: Space Physics, 118, 7798 – 7809. https://doi.org/10.1002/2013JA018860
dc.identifier.citedreferenceAa, E., Huang, W., Liu, S., Ridley, A., Zou, S., Shi, L., & Wang, T. ( 2018 ). Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Weather, 16, 321 – 331. https://doi.org/10.1002/2017SW001776
dc.identifier.citedreferenceAnderson, D. N., Buchau, J., & Heelis, R. A. ( 1988 ). Origin of density enhancements in the winter polar cap ionosphere. Radio Science, 23 ( 4 ), 513 – 519. https://doi.org/10.1029/RS023i004p00513
dc.identifier.citedreferenceArcher, W. E., & Knudsen, D. J. ( 2018 ). Distinguishing subauroral ion drifts from Birkeland current boundary flows. Journal of Geophysical Research: Space Physics, 123, 819 – 826. https://doi.org/10.1002/2017JA024577
dc.identifier.citedreferenceArcher, W. E., Knudsen, D., Burchill, J., Jackel, B., Donovan, E., Connors, M., & Juusola, L. ( 2017 ). Birkeland current boundary flows. Journal of Geophysical Research: Space Physics, 122, 4617 – 4627. https://doi.org/10.1002/2016JA023789
dc.identifier.citedreferenceBuzulukova, N., Fok, M. C., Pulkkinen, A., Kuznetsova, M., Moore, T. E., Glocer, A., & Rastaetter, L. ( 2010 ). Dynamics of ring current and electric fields in the inner magnetosphere during disturbed periods: CRCM‐BATS‐R‐US coupled model. 115, A05210. https://doi.org/10.1029/2009JA014621
dc.identifier.citedreferenceCarlson, H. C., Moen, J., Oksavik, K., Nielsen, C. P., McCrea, I. W., Pedersen, T. R., & Gallop, P. ( 2006 ). Direct observations of injection events of subauroral plasma into the polar cap. Geophysical Research Letters, 33, L05103. https://doi.org/10.1029/2005GL025230
dc.identifier.citedreferenceCarlson, H. C., Oksavik, K., Moen, J., & Pedersen, T. ( 2004 ). Ionospheric patch formation: Direct measurements of the origin of a polar cap patch. Geophysical Research Letters, 31, L08806. https://doi.org/10.1029/2003GL018166
dc.identifier.citedreferenceChamberlin, P. C., Woods, T. N., & Eparvier, F. G. ( 2007 ). Flare irradiance spectral model (FISM): Daily component algorithms and results. Space Weather, 5, S05001. https://doi.org/10.1029/2007SW000316
dc.identifier.citedreferenceChamberlin, P. C., Woods, T. N., & Eparvier, F. G. ( 2008 ). Flare irradiance spectral model (FISM): Flare component algorithms and results. Space Weather, 5, S07005. https://doi.org/10.1029/2007SW000316
dc.identifier.citedreferenceDe Zeeuw, D. L., Sazykin, S., Wolf, R. A., Gombosi, T. I., Ridley, A. J., & Tóth, G. ( 2004 ). Coupling of a global MHD code and an inner magnetospheric model: Initial results. Journal of Geophysical Research, 109, A12219. https://doi.org/10.1029/2003JA010366
dc.identifier.citedreferenceFoster, J. C. ( 1984 ). Inospheric signatures of magnetospheric convection. Journal of Geophysical Research, 89 ( 2 ), 855 – 865.
dc.identifier.citedreferenceFoster, J. C. ( 1993 ). Storm time plasma transport at middle and high latitudes. Journal of Geophysical Research, 98 ( A2 ), 1675 – 1689. https://doi.org/10.1029/92ja02032
dc.identifier.citedreferenceFuller‐Rowell, T. J., & Evans, D. S. ( 1987 ). Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data. Journal of Geophysical Research, 92 ( A7 ), 7606 – 7618. https://doi.org/10.1029/JA092iA07p07606
dc.identifier.citedreferenceGoodwin, L. V., Iserhienrhien, B., Miles, D. M., Patra, S., Meeren, C. V. D., Buchert, S. C., & Moen, J. ( 2015 ). Swarm in situ observations of F region polar cap patches created by cusp precipitation. Geophysical Research Letters, 42, 996 – 1003. https://doi.org/10.1002/2014GL062610
dc.identifier.citedreferenceHeelis, R. A., Sojka, J. J., David, M., & Schunk, R. W. ( 2009 ). Storm time density enhancements in the middle‐latitude dayside ionosphere. Journal of Geophysical Research, 114, A03315. https://doi.org/10.1029/2008JA013690
dc.identifier.citedreferenceJin, H., Zou, S., Chen, G., Yan, C., Zhang, S., & Yang, G. ( 2018 ). Formation and evolution of low‐latitude F region field‐aligned irregularities during the 7‐8 September 2017 storm: Hainan coherent scatter phased array radar and Digisonde observations. Space Weather, 16, 648 – 659. https://doi.org/10.1029/2018SW001865
dc.identifier.citedreferenceLockwood, M., & Carlson, H. C. ( 1992 ). production of polar cap electron density patches by transient magnetopause reconnection. Geophysical Research Letters, 19 ( 17 ), 1731 – 1734.
dc.identifier.citedreferenceMilan, S. E., Lester, M., & Yeoman, T. K. ( 2002 ). HF radar polar patch formation revisited: Summer and winter variations in dayside plasma structuring. Annales Geophysicae, 20 ( 4 ), 487 – 499. https://doi.org/10.5194/angeo-20-487-2002
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.