Show simple item record

Pain mechanisms in hereditary palmoplantar keratodermas

dc.contributor.authorWeinberg, R.L.
dc.contributor.authorCoulombe, P.A.
dc.contributor.authorPolydefkis, M.
dc.contributor.authorCaterina, M.J.
dc.date.accessioned2020-03-17T18:33:37Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:33:37Z
dc.date.issued2020-03
dc.identifier.citationWeinberg, R.L.; Coulombe, P.A.; Polydefkis, M.; Caterina, M.J. (2020). "Pain mechanisms in hereditary palmoplantar keratodermas." British Journal of Dermatology (3): 543-551.
dc.identifier.issn0007-0963
dc.identifier.issn1365-2133
dc.identifier.urihttps://hdl.handle.net/2027.42/154478
dc.publisherWiley Periodicals, Inc.
dc.titlePain mechanisms in hereditary palmoplantar keratodermas
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDermatology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154478/1/bjd17880_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154478/2/bjd17880.pdf
dc.identifier.doi10.1111/bjd.17880
dc.identifier.sourceBritish Journal of Dermatology
dc.identifier.citedreferenceNofal A, Assaf M, Nassar A et al. Nonmutilating palmoplantar and periorificial kertoderma: a variant of Olmsted syndrome or a distinct entity? Int J Dermatol 2010; 49: 658 – 65.
dc.identifier.citedreferenceXiao R, Tang J, Wang C et al. Calcium plays a central role in the sensitization of TRPV3 channel to repetitive stimulations. J Biol Chem 2008; 283: 6162 – 74.
dc.identifier.citedreferenceDanso‐Abeam D, Zhang J, Dooley J et al. Olmsted syndrome: exploration of the immunological phenotype. Orphanet J Rare Dis 2013; 8: 79.
dc.identifier.citedreferenceHe Y, Zeng K, Zhang X et al. A gain‐of‐function mutation in TRPV3 causes focal palmoplantar keratoderma in a Chinese family. J Invest Dermatol 2015; 135: 907 – 9.
dc.identifier.citedreferencePappas A. Epidermal surface lipids. Dermatoendocrinol 2009; 1: 72 – 6.
dc.identifier.citedreferenceFischer J, Bouadjar B, Heilig R et al. Mutations in the gene encoding SLURP‐1 in Mal de Meleda. Hum Mol Genet 2001; 10: 875 – 80.
dc.identifier.citedreferencePerez C, Khachemoune A. Mal de Meleda: a focused review. Am J Clin Dermatol 2016; 17: 63 – 70.
dc.identifier.citedreferenceMorais e Silva FA, Cunha TV, Boeno Edos S, Steiner D. Mal de Meleda: a report of two cases of familial occurrence. An Bras Dermatol 2011; 86 ( 4 Suppl. 1 ): S100 – 3.
dc.identifier.citedreferenceWajid M, Kurban M, Shimomura Y, Christiano AM. Mutations in the SLURP‐1 gene underlie Mal de Meleda in three Pakistani families. J Dermatol Sci 2009; 56: 27 – 32.
dc.identifier.citedreferenceMoriwaki Y, Watanabe Y, Shinagawa T et al. Primary sensory neuronal expression of SLURP‐1, an endogenous nicotinic acetylcholine receptor ligand. Neurosci Res 2009; 64: 403 – 12.
dc.identifier.citedreferenceSaftic V, Rudan D, Zgaga L. Mendelian diseases and conditions in Croatian island populations: historic records and new insights. Croat Medical J 2006; 47: 543 – 52.
dc.identifier.citedreferenceChimienti F, Hogg RC, Plantard L et al. Identification of SLURP‐1 as an epidermal neuromodulator explains the clinical phenotype of Mal de Meleda. Hum Mol Genet 2003; 12: 3017 – 24.
dc.identifier.citedreferenceReis A, Hennies HC, Langbein L et al. Keratin 9 gene mutations in epidermolytic palmoplantar keratoderma (EPPK). Nat Genet 1994; 6: 174 – 9.
dc.identifier.citedreferenceChen N, Sun J, Song Y et al. A novel mutation of KRT9 gene in a Chinese Han pedigree with epidermolytic palmoplantar keratoderma. J Cosmet Dermatol 2017; 16: 402 – 6.
dc.identifier.citedreferenceAlves Gomides MD, Migliorini Felisbino MP, Villela Berbert ALC, Carvalho Dornelas BC. Epidermolytic palmoplantar keratoderma of Vörner‐Case Report. J Clin Exp Dermatol Res 2018; 9: 4.
dc.identifier.citedreferenceRabinowitz LG, Williams LR, Anderson CE et al. Painful keratoderma and photophobia: hallmarks of tyrosinemia type II. J Pediatr 1995; 126: 266 – 9.
dc.identifier.citedreferenceKong MS, Harford R, O’Neill JT. Keratosis punctata palmoplantaris controlled with topical retinoids: a case report and review of the literature. Cutis 2004; 74: 173 – 9.
dc.identifier.citedreferencevon Bischhoffshausen S, Ivulic D, Alvarez P et al. Recessive dystrophic epidermolysis bullosa results in painful small fibre neuropathy. Brain 2017; 140: 1238 – 51.
dc.identifier.citedreferenceGuerra L, Castori M, Didona B et al. Hereditary palmoplantar keratodermas. Part II: syndromic palmoplantar keratodermas ‐ diagnostic algorithm and principles of therapy. J Eur Acad Dermatol Venereol 2018; 32: 899 – 925.
dc.identifier.citedreferenceGuerra L, Castori M, Didona B et al. Hereditary palmoplantar keratodermas. Part I. Non‐syndromic palmoplantar keratodermas: classification, clinical and genetic features. J Eur Acad Dermatol Venereol 2018; 32: 704 – 19.
dc.identifier.citedreferenceHas C, Technau‐Hafsi K. Palmoplantar keratodermas: clinical and genetic aspects. J Dtsch Dermatol Ges 2016; 14: 123 – 39.
dc.identifier.citedreferenceSakiyama T, Kubo A. Hereditary palmoplantar keratoderma “clinical and genetic differential diagnosis”. J Dermatol 2016; 43: 264 – 74.
dc.identifier.citedreferenceSchiller S, Seebode C, Hennies HC et al. Palmoplantar keratoderma (PPK): acquired and genetic causes of a not so rare disease. J Dtsch Dermatol Ges 2014; 12: 781 – 8.
dc.identifier.citedreferenceSchonfeld PH. The pachyonychia congenita syndrome. Acta Derm Venereol 1980; 60: 45 – 9.
dc.identifier.citedreferenceGoldberg I, Sprecher E, Schwartz ME, Gaitini D. Comparative study of high‐resolution multifrequency ultrasound of the plantar skin in patients with various types of hereditary palmoplantar keratoderma. Dermatology 2013; 226: 365 – 70.
dc.identifier.citedreferenceSreeramulu B, Shyam ND, Ajay P, Suman P. Papillon‐Lefevre syndrome: clinical presentation and management options. Clin Cosmet Investig Dent 2015; 7: 75 – 81.
dc.identifier.citedreferenceFuchs E, Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet 2002; 3: 199 – 209.
dc.identifier.citedreferenceHilliges M, Wang L, Johansson O. Ultrastructural evidence for nerve fibers within all vital layers of the human epidermis. J Invest Dermatol 1995; 104: 134 – 7.
dc.identifier.citedreferenceTalagas M, Lebonvallet N, Leschiera R et al. What about physical contacts between epidermal keratinocytes and sensory neurons? Exp Dermatol 2018; 27: 9 – 13.
dc.identifier.citedreferenceKeppel Hesselink JM, Kopsky DJ, Bhaskar AK. Skin matters! The role of keratinocytes in nociception: a rational argument for the development of topical analgesics. J Pain Res 2017; 10: 1 – 8.
dc.identifier.citedreferenceLumpkin EA, Caterina MJ. Mechanisms of sensory transduction in the skin. Nature 2007; 445: 858 – 65.
dc.identifier.citedreferenceKoizumi S, Fujishita K, Inoue K et al. Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochem J 2004; 380: 329 – 38.
dc.identifier.citedreferenceMoehring F, Cowie AM, Menzel AD et al. Keratinocytes mediate innocuous and noxious touch via ATP‐P2X4 signaling. Elife 2018; 7: e31684.
dc.identifier.citedreferenceSouthall MD, Li T, Gharibova LS et al. Activation of epidermal vanilloid receptor‐1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 2003; 304: 217 – 22.
dc.identifier.citedreferenceHuang SM, Lee H, Chung MK et al. Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 2008; 28: 13727 – 37.
dc.identifier.citedreferenceRoméro‐Graillet C, Aberdam E, Clement M et al. Nitric oxide produced by ultraviolet‐irradiated keratinocytes stimulates melanogenesis. J Clin Invest 1997; 99: 635 – 42.
dc.identifier.citedreferenceMiyamoto T, Petrus MJ, Dubin AE, Patapoutian A. TRPV3 regulates nitric oxide synthase‐independent nitric oxide synthesis in the skin. Nature Commun 2011; 2: 369.
dc.identifier.citedreferenceGrando SA, Kist DA, Qi M, Dahl MV. Human keratinocytes synthesize, secrete, and degrade acetylcholine. J Invest Dermatol 1993; 101: 32 – 6.
dc.identifier.citedreferenceShu XQ, Mendell LM. Neurotrophins and hyperalgesia. Proc Natl Acad Sci USA 1999; 96: 7693 – 6.
dc.identifier.citedreferenceHou Q, Barr T, Gee L et al. Keratinocyte expression of calcitonin gene‐related peptide beta: implications for neuropathic and inflammatory pain mechanisms. Pain 2011; 152: 2036 – 51.
dc.identifier.citedreferenceKhodorova A, Fareed MU, Gokin A et al. Local injection of a selective endothelin‐B receptor agonist inhibits endothelin‐1‐induced pain‐like behavior and excitation of nociceptors in a naloxone‐sensitive manner. J Neurosci 2002; 22: 7788 – 96.
dc.identifier.citedreferenceIbrahim MM, Porreca F, Lai J et al. CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc Natl Acad Sci USA 2005; 102: 3093 – 8.
dc.identifier.citedreferenceWilson SR, Thé L, Batia LM et al. The epithelial cell‐derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013; 155: 285 – 95.
dc.identifier.citedreferenceXu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove‐derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 2006; 9: 628 – 35.
dc.identifier.citedreferenceLi WW, Sabsovich I, Guo TZ et al. The role of enhanced cutaneous IL‐1beta signaling in a rat tibia fracture model of complex regional pain syndrome. Pain 2009; 144: 303 – 13.
dc.identifier.citedreferenceGrone A. Keratinocytes and cytokines. Vet Immunol Immunopathol 2002; 88: 1 – 12.
dc.identifier.citedreferencePang Z, Sakamoto T, Tiwari V et al. Selective keratinocyte stimulation is sufficient to evoke nociception in mice. Pain 2015; 156: 656 – 65.
dc.identifier.citedreferenceBaumbauer KM, DeBerry JJ, Adelman PC et al. Keratinocytes can modulate and directly initiate nociceptive responses. Elife 2015; 4: e09674.
dc.identifier.citedreferenceCordoro KM, Ganz JE. Training room management of medical conditions: sports dermatology. Clin Sports Med 2005; 24: 565 – 98, viii–ix.
dc.identifier.citedreferencePhillips S, Seiverling E, Silvis M. Pressure and friction injuries in primary care. Prim Care 2015; 42: 631 – 44.
dc.identifier.citedreferenceSu WP, Chun SI, Hammond DE, Gordon H. Pachyonychia congenita: a clinical study of 12 cases and review of the literature. Pediatr Dermatol 1990; 7: 33 – 8.
dc.identifier.citedreferenceDuchatelet S, Guibbal L, de Veer S et al. Olmsted syndrome with erythromelalgia caused by recessive transient receptor potential vanilloid 3 mutations. Br J Dermatol 2014; 171: 675 – 8.
dc.identifier.citedreferenceCharfeddine C, Mokni M, Kassar S et al. Further evidence of the clinical and genetic heterogeneity of recessive transgressive PPK in the Mediterranean region. J Hum Genet 2006; 51: 841 – 5.
dc.identifier.citedreferenceLessard JC, Coulombe PA. Keratin 16‐null mice develop palmoplantar keratoderma, a hallmark feature of pachyonychia congenita and related disorders. J Invest Dermatol 2012; 132: 1384 – 91.
dc.identifier.citedreferenceAsakawa M, Yoshioka T, Matsutani T et al. Association of a mutation in TRPV3 with defective hair growth in rodents. J Invest Dermatol 2006; 126: 2664 – 72.
dc.identifier.citedreferenceTotsch SK, Sorge RE. Immune system involvement in specific pain conditions. Mol Pain 2017; 13: 1744806917724559.
dc.identifier.citedreferencePinho‐Ribeiro FA, Verri WA Jr, Chiu IM. Nociceptor sensory neuron‐immune interactions in pain and inflammation. Trends Immunol 2017; 38: 5 – 19.
dc.identifier.citedreferenceTjiu JW, Lin PJ, Wu WH et al. SLURP1 mutation‐impaired T‐cell activation in a family with mal de Meleda. Br J Dermatol 2011; 164: 47 – 53.
dc.identifier.citedreferenceByrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol 2018; 16: 143 – 55.
dc.identifier.citedreferenceChiu IM, Heesters BA, Ghasemlou N et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 2013; 501: 52 – 7.
dc.identifier.citedreferenceChiu IM, Pinho‐Ribeiro FA, Woolf CJ. Pain and infection: pathogen detection by nociceptors. Pain 2016; 157: 1192 – 3.
dc.identifier.citedreferenceKelly EK, Wang L, Ivashkiv LB. Calcium‐activated pathways and oxidative burst mediate zymosan‐induced signaling and IL‐10 production in human macrophages. J Immunol 2010; 184: 5545 – 52.
dc.identifier.citedreferenceLiu T, Xu ZZ, Park CK, Ji RR. Toll‐like receptor 7 mediates pruritus. Nat Neurosci 2010; 13: 1460 – 2.
dc.identifier.citedreferenceZylka MJ, Rice FL, Anderson DJ. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 2005; 45: 17 – 25.
dc.identifier.citedreferenceBowsher D, Geoffrey Woods C, Nicholas AK et al. Absence of pain with hyperhidrosis: a new syndrome where vascular afferents may mediate cutaneous sensation. Pain 2009; 147: 287 – 98.
dc.identifier.citedreferenceBasbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009; 139: 267 – 84.
dc.identifier.citedreferenceSchuttenhelm BN, Duraku LS, Dijkstra JF et al. Differential changes in the peptidergic and the non‐peptidergic skin innervation in rat models for inflammation, dry skin itch, and dermatitis. J Invest Dermatol 2015; 135: 2049 – 57.
dc.identifier.citedreferencePolydefkis M, Hauer P, Sheth S et al. The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain 2004; 127: 1606 – 15.
dc.identifier.citedreferenceMellgren SI, Nolano M, Sommer C. The cutaneous nerve biopsy: technical aspects, indications, and contribution. Handb Clin Neurol 2013; 115: 171 – 88.
dc.identifier.citedreferenceDevigili G, Tugnoli V, Penza P et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain 2008; 131: 1912 – 25.
dc.identifier.citedreferenceLatremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 2009; 10: 895 – 926.
dc.identifier.citedreferenceMcLean WH, Hansen CD, Eliason MJ, Smith FJ. The phenotypic and molecular genetic features of pachyonychia congenita. J Invest Dermatol 2011; 131: 1015 – 17.
dc.identifier.citedreferenceMunro CS, Carter S, Bryce S et al. A gene for pachyonychia congenita is closely linked to the keratin gene cluster on 17q12‐q21. J Med Genet 1994; 31: 675 – 8.
dc.identifier.citedreferenceBowden PE, Haley JL, Kansky A et al. Mutation of a type II keratin gene (K6a) in pachyonychia congenita. Nat Genet 1995; 10: 363 – 5.
dc.identifier.citedreferenceMcLean WH, Rugg EL, Lunny DP et al. Keratin 16 and keratin 17 mutations cause pachyonychia congenita. Nat Genet 1995; 9: 273 – 8.
dc.identifier.citedreferenceSmith FJ, Jonkman MF, van Goor H et al. A mutation in human keratin K6b produces a phenocopy of the K17 disorder pachyonychia congenita type 2. Hum Mol Genet 1998; 7: 1143 – 8.
dc.identifier.citedreferenceGonzález‐Ramos J, Sendagorta‐Cudós E, González‐López G et al. Efficacy of botulinum toxin in pachyonychia congenita type 1: report of two new cases. Dermatol Ther 2016; 29: 32 – 6.
dc.identifier.citedreferenceSmith FJ, Liao H, Cassidy AJ et al. The genetic basis of pachyonychia congenita. J Investig Dermatol Symp Proc 2005; 10: 21 – 30.
dc.identifier.citedreferenceEliason MJ, Leachman SA, Feng BJ et al. A review of the clinical phenotype of 254 patients with genetically confirmed pachyonychia congenita. J Am Acad Dermatol 2012; 67: 680 – 6.
dc.identifier.citedreferenceKrupiczojc MA, O’Toole EA. Plantar pain in pachyonychia congenita. Br J Dermatol 2018; 179: 11 – 12.
dc.identifier.citedreferenceBrill S, Sprecher E, Smith FJD et al. Chronic pain in pachyonychia congenita: evidence for neuropathic origin. Br J Dermatol 2018; 179: 154 – 62.
dc.identifier.citedreferenceLeachman SA, Kaspar RL, Fleckman P et al. Clinical and pathological features of pachyonychia congenita. J Investig Dermatol Symp Proc 2005; 10: 3 – 17.
dc.identifier.citedreferenceFu T, Leachman SA, Wilson NJ et al. Genotype‐phenotype correlations among pachyonychia congenita patients with K16 mutations. J Invest Dermatol 2011; 131: 1025 – 8.
dc.identifier.citedreferenceAgarwala M, Salphale P, Peter D et al. Keratin 17 mutations in four families from India with pachyonychia congenita. Indian J Dermatol 2017; 62: 422 – 6.
dc.identifier.citedreferenceWallis T, Poole CD, Hoggart B. Can skin disease cause neuropathic pain? A study in pachyonychia congenita. Clin Exp Dermatol 2016; 41: 26 – 33.
dc.identifier.citedreferenceSwartling C, Vahlquist A. Treatment of pachyonychia congenita with plantar injections of botulinum toxin. Br J Dermatol 2006; 154: 763 – 5.
dc.identifier.citedreferencePan B, Byrnes K, Schwartz M et al. Peripheral neuropathic changes in pachyonychia congenita. Pain 2016; 157: 2843 – 53.
dc.identifier.citedreferenceDoucet YS, Woo SH, Ruiz ME, Owens DM. The touch dome defines an epidermal niche specialized for mechanosensory signaling. Cell Rep 2013; 3: 1759 – 65.
dc.identifier.citedreferenceMaksimovic S, Nakatani M, Baba Y et al. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 2014; 509: 617 – 21.
dc.identifier.citedreferenceWoo SH, Ranade S, Weyer AD et al. Piezo2 is required for Merkel‐cell mechanotransduction. Nature 2014; 509: 622 – 6.
dc.identifier.citedreferenceMaricich SM, Morrison KM, Mathes EL, Brewer BM. Rodents rely on Merkel cells for texture discrimination tasks. J Neurosci 2012; 32: 3296 – 300.
dc.identifier.citedreferenceKo MH, Yang ML, Youn SC et al. Intact subepidermal nerve fibers mediate mechanical hypersensitivity via the activation of protein kinase C gamma in spared nerve injury. Mol Pain 2016; 12: 1744806916656189.
dc.identifier.citedreferenceWright MC, Logan GJ, Bolock AM et al. Merkel cells are long‐lived cells whose production is stimulated by skin injury. Dev Biol 2017; 422: 4 – 13.
dc.identifier.citedreferenceCao YA, Hickerson RP, Seegmiller BL et al. Gene expression profiling in pachyonychia congenita skin. J Dermatol Sci 2015; 77: 156 – 65.
dc.identifier.citedreferenceRice RH, Durbin‐Johnson BP, Salemi M et al. Proteomic profiling of Pachyonychia congenita plantar callus. J Proteomics 2017; 165: 132 – 7.
dc.identifier.citedreferenceLessard JC, Pina‐Paz S, Rotty JD et al. Keratin 16 regulates innate immunity in response to epidermal barrier breach. Proc Natl Acad USA 2013; 110: 19537 – 42.
dc.identifier.citedreferenceKerns ML, Hakim JM, Lu RG et al. Oxidative stress and dysfunctional NRF2 underlie pachyonychia congenita phenotypes. J Clin Invest 2016; 126: 2356 – 66.
dc.identifier.citedreferenceKerns ML, Hakim JMC, Zieman A et al. Sexual Dimorphism in Response to an NRF2 Inducer in a Model for Pachyonychia Congenita. J Invest Dermatol 2018; 138: 1094 – 100.
dc.identifier.citedreferenceGanesh Yerra V, Negi G, Sharma SS, Kumar A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF‐ĸB pathways in diabetic neuropathy. Redox Biol 2013; 1: 394 – 7.
dc.identifier.citedreferenceTaha R, Blaise GA. Update on the pathogenesis of complex regional pain syndrome: role of oxidative stress. Can J Anaesth 2012; 59: 875 – 81.
dc.identifier.citedreferencePan B, Schroder W, Jostock R et al. Nociceptin/orphanin FQ opioid peptide‐receptor expression in pachyonychia congenita. J Peripher Nerv Syst 2018; 23: 241 – 8.
dc.identifier.citedreferenceArjomand J, Cole S, Evans CJ. Novel orphanin FQ/nociceptin transcripts are expressed in human immune cells. J Neuroimmunol 2002; 130: 100 – 8.
dc.identifier.citedreferenceGoldberg I, Fruchter D, Meilick A et al. Best treatment practices for pachyonychia congenita. J Eur Acad Dermatol Venereol 2014; 28: 279 – 85.
dc.identifier.citedreferenceRittié L, Kaspar RL, Sprecher E, Smith FJD. Report of the 13th Annual International Pachyonychia Congenita Consortium Symposium. Br J Dermatol 2017; 176: 1144 – 7.
dc.identifier.citedreferenceZhao Y, Gartner U, Smith FJ, McLean WH. Statins downregulate K6a promoter activity: a possible therapeutic avenue for pachyonychia congenita. J Invest Dermatol 2011; 131: 1045 – 52.
dc.identifier.citedreferenceAbdollahimajd F, Rajabi F, Shahidi‐Dadras M et al. Pachyonychia congenita: a case report of a successful treatment with rosuvastatin in a patient with a KRT6A mutation. Br J Dermatol 2019; 181: 584 – 6.
dc.identifier.citedreferenceHickerson RP, Leake D, Pho LN et al. Rapamycin selectively inhibits expression of an inducible keratin (K6a) in human keratinocytes and improves symptoms in pachyonychia congenita patients. J Dermatol Sci 2009; 56: 82 – 8.
dc.identifier.citedreferenceHickerson RP, Smith FJ, Reeves RE et al. Single‐nucleotide‐specific siRNA targeting in a dominant‐negative skin model. J Invest Dermatol 2008; 128: 594 – 605.
dc.identifier.citedreferenceSmith FJ, Hickerson RP, Sayers JM et al. Development of therapeutic siRNAs for pachyonychia congenita. J Invest Dermatol 2008; 128: 50 – 8.
dc.identifier.citedreferenceLeachman SA, Hickerson RP, Schwartz ME et al. First‐in‐human mutation‐targeted siRNA phase Ib trial of an inherited skin disorder. Mol Ther 2010; 18: 442 – 6.
dc.identifier.citedreferenceTariq S, Schmitz ML, Kanjia MK. Chronic foot pain due to pachyonychia congenita in a pediatric patient: a successful management strategy. A A Case Rep 2016; 6: 305 – 7.
dc.identifier.citedreferenceSwartling C, Karlqvist M, Hymnelius K et al. Botulinum toxin in the treatment of sweat‐worsened foot problems in patients with epidermolysis bullosa simplex and pachyonychia congenita. Br J Dermatol 2010; 163: 1072 – 6.
dc.identifier.citedreferenceDuchatelet S, Hovnanian A. Olmsted syndrome: clinical, molecular and therapeutic aspects. Orphanet J Rare Dis 2015; 10: 33.
dc.identifier.citedreferenceMevorah B, Goldberg I, Sprecher E et al. Olmsted syndrome: mutilating palmoplantar keratoderma with periorificial keratotic plaques. J Am Acad Dermatol 2005; 53 ( 5 Suppl. 1 ): S266 – 72.
dc.identifier.citedreferenceWang HJ, Tang ZL, Lin ZM et al. Recurrent splice‐site mutation in MBTPS2 underlying IFAP syndrome with Olmsted syndrome‐like features in a Chinese patient. Clin Exp Dermatol 2014; 39: 158 – 61.
dc.identifier.citedreferenceHaghighi A, Scott CA, Poon DS et al. A missense mutation in the MBTPS2 gene underlies the X‐linked form of Olmsted syndrome. J Invest Dermatol 2013; 133: 571 – 3.
dc.identifier.citedreferenceTao J, Huang CZ, Yu NW et al. Olmsted syndrome: a case report and review of literature. Int J Dermatol 2008; 47: 432 – 7.
dc.identifier.citedreferenceTakeichi T, Tsukamoto K, Okuno Y et al. A combination of low‐dose systemic etretinate and topical calcipotriol/betamethasone dipropionate treatment for hyperkeratosis and itching in Olmsted syndrome associated with a TRPV3 mutation. J Dermatol Sci 2017; 88: 144 – 6.
dc.identifier.citedreferenceChoi JY, Kim SE, Lee SE, Kim SC. Olmsted syndrome caused by a heterozygous p.Gly568Val missense mutation in TRPV3 gene. Yonsei Med J 2018; 59: 341 – 4.
dc.identifier.citedreferenceDuchatelet S, Pruvost S, de Veer S et al. A new TRPV3 missense mutation in a patient with Olmsted syndrome and erythromelalgia. JAMA Dermatol 2014; 150: 303 – 6.
dc.identifier.citedreferenceZhi YP, Liu J, Han JW et al. Two familial cases of Olmsted‐like syndrome with a G573V mutation of the TRPV3 gene. Clin Exp Dermatol 2016; 41: 510 – 13.
dc.identifier.citedreferenceLin Z, Chen Q, Lee M et al. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet 2012; 90: 558 – 64.
dc.identifier.citedreferenceBédard MS, Powell J, Laberge L et al. Palmoplantar keratoderma and skin grafting: postsurgical long‐term follow‐up of two cases with Olmsted syndrome. Pediatr Dermatol 2008; 25: 223 – 9.
dc.identifier.citedreferenceDessureault J, Poulin Y, Bourcier M, Gagne E. Olmsted syndrome‐palmoplantar and periorificial keratodermas: association with malignant melanoma. J Cutan Med Surg 2003; 7: 236 – 42.
dc.identifier.citedreferencePeier AM, Reeve AJ, Andersson DA et al. A heat‐sensitive TRP channel expressed in keratinocytes. Science 2002; 296: 2046 – 9.
dc.identifier.citedreferenceMoqrich A, Hwang SW, Earley TJ et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 2005; 307: 1468 – 72.
dc.identifier.citedreferenceChung MK, Lee H, Mizuno A et al. 2‐aminoethoxydiphenyl borate activates and sensitizes the heat‐gated ion channel TRPV3. J Neurosci 2004; 24: 5177 – 82.
dc.identifier.citedreferenceBang S, Yoo S, Yang TJ et al. Isopentenyl pyrophosphate is a novel antinociceptive substance that inhibits TRPV3 and TRPA1 ion channels. Pain 2011; 152: 1156 – 64.
dc.identifier.citedreferenceXu H, Ramsey IS, Kotecha SA et al. TRPV3 is a calcium‐permeable temperature‐sensitive cation channel. Nature 2002; 418: 181 – 6.
dc.identifier.citedreferenceHeng TS, Painter MW. Immunological Genome Project C. The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol 2008; 9: 1091 – 4.
dc.identifier.citedreferenceCheng X, Jin J, Hu L et al. TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 2010; 141: 331 – 43.
dc.identifier.citedreferenceBorbíró I, Lisztes E, Tóth BI et al. Activation of transient receptor potential vanilloid‐3 inhibits human hair growth. J Invest Dermatol 2011; 131: 1605 – 14.
dc.identifier.citedreferenceHuang SM, Li X, Yu Y et al. TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. Mol Pain 2011; 7: 37.
dc.identifier.citedreferenceMarics I, Malapert P, Reynders A et al. Acute heat‐evoked temperature sensation is impaired but not abolished in mice lacking TRPV1 and TRPV3 channels. PLOS ONE 2014; 9: e99828.
dc.identifier.citedreferenceKunert‐Keil C, Bisping F, Krüger J, Brinkmeier H. Tissue‐specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 2006; 7: 159.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.