Show simple item record

Conditions of Loss Cone Filling by Scattering on the Curved Field Lines for 30 keV Protons During Geomagnetic Storm as Inferred From Numerical Trajectory Tracing

dc.contributor.authorDubyagin, S.
dc.contributor.authorApatenkov, S.
dc.contributor.authorGordeev, E.
dc.contributor.authorGanushkina, N.
dc.contributor.authorZheng, Y.
dc.date.accessioned2021-01-05T18:45:28Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2021-01-05T18:45:28Z
dc.date.issued2021-01
dc.identifier.citationDubyagin, S.; Apatenkov, S.; Gordeev, E.; Ganushkina, N.; Zheng, Y. (2021). "Conditions of Loss Cone Filling by Scattering on the Curved Field Lines for 30 keV Protons During Geomagnetic Storm as Inferred From Numerical Trajectory Tracing." Journal of Geophysical Research: Space Physics 126(1): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/163828
dc.description.abstractThe rate of pitch angle scattering on the curved magnetic field lines is well parameterized by the ratio of the minimum field line curvature radius to the maximum effective particle gyroradius (K = RC/rg). The critical value of this ratio (Kcr) corresponding to the loss cone filling is of special interest since it corresponds to the low altitude isotropic boundaries (IBs). The early theoretical estimates gave Kcr = 8, whereas recent estimations of the K parameter on the field lines corresponding to the observed IBs during the geomagnetic storms revealed KIB values in the range of 3–30. We numerically trace the trajectories of the 30 keV protons in the magnetic field of the global magnetohydrodynamic simulation of the intense storm in order to infer statistical distribution of Kcr. The electric field and effects of nonstationarity are neglected in this study. It is found that although the Kcr values do show some variations during the course of the storm, its range is rather narrow 4 < Kcr < 8. The result suggests that higher KIB values found in the observational studies, if not caused by the magnetosphere‐ionosphere mapping error, should be attributed to some other mechanism of pitch angle scattering. The Kcr values tend to be lower (4–6) during the main phase because the region of low K values approaches the Earth and the equatorial loss cone size becomes larger due to a larger equatorial magnetic field in the near‐earth region. The remaining variation of Kcr is explained by the presence of the guide component of the magnetic field.Key Points30 keV proton trajectories are traced to model the loss cone filling by scattering on the curved field lines during geomagnetic stormCritical value of adiabaticity parameter (Kcr) corresponding to the loss cone filling varies in the range of 4–8This Kcr variation is due to variations of the equatorial loss cone size and the guide component of magnetic field in the current sheet
dc.publisherImperial College Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otheradiabaticity parameter
dc.subject.otherpitch angle scattering
dc.subject.othercurrent sheet
dc.subject.otherstorm
dc.subject.otherisotropic boundary
dc.titleConditions of Loss Cone Filling by Scattering on the Curved Field Lines for 30 keV Protons During Geomagnetic Storm as Inferred From Numerical Trajectory Tracing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163828/1/jgra56124_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163828/2/2020JA028490-sup-0001-Text_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163828/3/jgra56124.pdf
dc.identifier.doi10.1029/2020JA028490
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSergeev, V. A., Sazhina, E. M., Tsyganenko, N. A., Lundblad, J. A., & Soraas, F. ( 1983 ). Pitch‐angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere. Planetary and Space Science, 31 ( 10 ), 1147 – 1155. https://doi.org/10.1016/0032-0633(83)90103-4
dc.identifier.citedreferenceKubyshkina, M., Sergeev, V. A., Tsyganenko, N. A., & Zheng, Y. ( 2019 ). Testing efficiency of empirical, adaptive, and global MHD magnetospheric models to represent the geomagnetic field in a variety of conditions. Space Weather, 17 ( 5 ), 672 – 686. https://doi.org/10.1029/2019SW002157
dc.identifier.citedreferenceLarson, D. J., & Kaufmann, R. L. ( 1996 ). Structure of the magnetotail current sheet. Journal of Geophysical Research, 101 ( A10 ), 21447 – 21461. https://doi.org/10.1029/96JA01945
dc.identifier.citedreferenceLiang, J., Donovan, E., Ni, B., Yue, C., Jiang, F., & Angelopoulos, V. ( 2014 ). On an energy‐latitude dispersion pattern of ion precipitation potentially associated with magnetospheric EMIC waves. Journal of Geophysical Research: Space Physics, 119 ( 10 ), 8137 – 8160. https://doi.org/10.1002/2014JA020226
dc.identifier.citedreferenceLiang, J., Donovan, E., Spanswick, E., & Angelopoulos, V. ( 2013 ). Multiprobe estimation of field line curvature radius in the equatorial magnetosphere and the use of proton precipitations in magnetosphere‐ionosphere mapping. Journal of Geophysical Research: Space Physics, 118 ( 8 ), 4924 – 4945. https://doi.org/10.1002/jgra.50454
dc.identifier.citedreferenceNishimura, Y., Shinbori, A., Ono, T., Iizima, M., & Kumamoto, A. ( 2006 ). Storm‐time electric field distribution in the inner magnetosphere. Geophysical Research Letters, 33, L22102. https://doi.org/10.1029/2006GL027510
dc.identifier.citedreferencePopova, T. A., Yahnin, A. G., Demekhov, A. G., & Chernyaeva, S. A. ( 2018 ). Generation of EMIC waves in the magnetosphere and precipitation of energetic protons: Comparison of the data from THEMIS high Earth orbiting satellites and POES low Earth orbiting satellites. Geomagnetism and Aeronomy, 58 ( 4 ), 469 – 482. https://doi.org/10.1134/S0016793218040114
dc.identifier.citedreferenceRowland, D. E., & Wygant, J. R. ( 1998 ). Dependence of the large‐scale, inner magnetospheric electric field on geomagnetic activity. Journal of Geophysical Research, 103 ( A7 ), 14959 – 14964. https://doi.org/10.1029/97JA03524
dc.identifier.citedreferenceSemenova, N. V., Yahnin, A. G., Yahnina, T. A., & Demekhov, A. G. ( 2019 ). Properties of localized precipitation of energetic protons equatorward of the isotropic boundary. Geophysical Research Letters, 46 ( 20 ), 10932 – 10940. https://doi.org/10.1029/2019GL085373
dc.identifier.citedreferenceSergeev, V. A., Chernyaev, I. A., Angelopoulos, V., & Ganushkina, N. Y. ( 2015 ). Magnetospheric conditions near the equatorial footpoints of proton isotropy boundaries. Annales Geophysicae, 33 ( 12 ), 1485 – 1493. https://doi.org/10.5194/angeo-33-1485-2015
dc.identifier.citedreferenceSergeev, V. A., Chernyaeva, S. A., Apatenkov, S. V., Ganushkina, N. Y., & Dubyagin, S. V. ( 2015 ). Energy‐latitude dispersion patterns near the isotropy boundaries of energetic protons. Annales Geophysicae, 33 ( 8 ), 1059 – 1070. https://doi.org/10.5194/angeo-33-1059-2015
dc.identifier.citedreferenceSergeev, V. A., Malkov, M., & Mursula, K. ( 1993 ). Testing the isotropic boundary algorithm method to evaluate the magnetic field configuration in the tail. Journal of Geophysical Research, 98 ( A5 ), 7609 – 7620. https://doi.org/10.1029/92JA02587
dc.identifier.citedreferenceShevchenko, I. G., Sergeev, V., Kubyshkina, M., Angelopoulos, V., Glassmeier, K. H., & Singer, H. J. ( 2010 ). Estimation of magnetosphere‐ionosphere mapping accuracy using isotropy boundary and THEMIS observations. Journal of Geophysical Research, 115, A11206. https://doi.org/10.1029/2010JA015354
dc.identifier.citedreferenceSpeiser, T. W. ( 1965 ). Particle trajectories in model current sheets: 1. Analytical solutions. Journal of Geophysical Research, 70 ( 17 ), 4219 – 4226. https://doi.org/10.1029/JZ070i017p04219
dc.identifier.citedreferenceStephens, C. D., Brzozowski, R. W., & Jenko, F. ( 2017 ). On the limitations of gyrokinetics: Magnetic moment conservation. Physics of Plasmas, 24 ( 10 ), 102517. https://doi.org/10.1063/1.4998968
dc.identifier.citedreferenceStern, D. P. ( 1966 ). The motion of magnetic field lines. Space Science Reviews, 6 ( 2 ), 147 – 173. https://doi.org/10.1007/BF00222592
dc.identifier.citedreferenceTóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R., De Zeeuw, D. L., et al. ( 2005 ). Space Weather Modeling Framework: A new tool for the space science community. Journal of Geophysical Research, 110, A12226. https://doi.org/10.1029/2005JA011126
dc.identifier.citedreferenceTsyganenko, N. A. ( 1982 ). Pitch‐angle scattering of energetic particles in the current sheet of the magnetospheric tail and stationary distribution functions. Planetary and Space Science, 30 ( 5 ), 433 – 437. https://doi.org/10.1016/0032-0633(82)90052-6
dc.identifier.citedreferenceTsyganenko, N. A., & Andreeva, V. A. ( 2017 ). A hybrid approach to empirical magnetosphere modeling. Journal of Geophysical Research: Space Physics, 122 ( 8 ), 8198 – 8213. https://doi.org/10.1002/2017JA024359
dc.identifier.citedreferenceTsyganenko, N. A., & Sitnov, M. I. ( 2005 ). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. Journal of Geophysical Research, 110, A03208. https://doi.org/10.1029/2004JA010798
dc.identifier.citedreferenceTsyganenko, N. A., & Sitnov, M. I. ( 2007 ). Magnetospheric configurations from a high‐resolution data‐based magnetic field model. Journal of Geophysical Research, 112, A06225. https://doi.org/10.1029/2007JA012260
dc.identifier.citedreferenceUsanova, M. E., Mann, I. R., Bortnik, J., Shao, L., & Angelopoulos, V. ( 2012 ). THEMIS observations of electromagnetic ion cyclotron wave occurrence: Dependence on AE, SYMH, and solar wind dynamic pressure. Journal of Geophysical Research: Space Physics, 117, A10218. https://doi.org/10.1029/2012JA018049
dc.identifier.citedreferenceWest, H. I., Buck, R. M., & Kivelson, M. G. ( 1978 ). On the configuration of the magnetotail near midnight during quiet and weakly disturbed periods: Magnetic field modeling. Journal of Geophysical Research, 83 ( A8 ), 3819 – 3829. https://doi.org/10.1029/JA083iA08p03819
dc.identifier.citedreferenceYahnin, A., & Yahnina, T. ( 2007 ). Energetic proton precipitation related to ion‐cyclotron waves. Journal of Atmospheric and Solar‐Terrestrial Physics, 69 ( 14 ), 1690 – 1706. https://doi.org/10.1016/j.jastp.2007.02.010
dc.identifier.citedreferenceZhu, Z., & Parks, G. ( 1993 ). Particle orbits in model current sheets with a nonzero B y component. Journal of Geophysical Research, 98 ( A5 ), 7603 – 7608. https://doi.org/10.1029/92JA02366
dc.identifier.citedreferenceGordeev, E., Sergeev, V., Honkonen, I., Kuznetsova, M., Rastätter, L., Palmroth, M., et al. ( 2015 ). Assessing the performance of community‐available global MHD models using key system parameters and empirical relationships. Space Weather, 13 ( 12 ), 868 – 884. https://doi.org/10.1002/2015SW001307
dc.identifier.citedreferenceAsikainen, T., Maliniemi, V., & Mursula, K. ( 2010 ). Modeling the contributions of ring, tail, and magnetopause currents to the corrected Dst index. Journal of Geophysical Research, 115, A12203. https://doi.org/10.1029/2010JA015774
dc.identifier.citedreferenceBaumjohann, W., & Treumann, R. ( 1996 ). Basic space plasma physics, 15 – 22. London, UK: Imperial College Press. https://doi.org/10.1142/p015
dc.identifier.citedreferenceBock, R. K., & Krischer, W. ( 1998 ). The data analysis briefbook ( 1st ed. ). Berlin, Heidelberg: Springer‐Verlag.
dc.identifier.citedreferenceBüchner, J., & Zeleny, L. ( 1986 ). Deterministic chaos in the dynamics of charged particles near a magnetic field reversal. Physics Letters A, 118 ( 8 ), 395 – 399. https://doi.org/10.1016/0375-9601(86)90268-9
dc.identifier.citedreferenceBüchner, J., & Zelenyi, L. M. ( 1989 ). Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion. Journal of Geophysical Research, 94 ( A9 ), 11821 – 11842. https://doi.org/10.1029/JA094iA09p11821
dc.identifier.citedreferenceBüchner, J., & Zelenyi, L. ( 1991 ). Regular and chaotic particle motion in sheared magnetic field reversals. Advances in Space Research, 11 ( 9 ), 177 – 182. https://doi.org/10.1016/0273-1177(91)90030-N
dc.identifier.citedreferenceChen, H., Gao, X., Lu, Q., & Wang, S. ( 2019 ). Analyzing EMIC waves in the inner magnetosphere using long‐term Van Allen probes observations. Journal of Geophysical Research: Space Physics, 124 ( 9 ), 7402 – 7412. https://doi.org/10.1029/2019JA026965
dc.identifier.citedreferenceDelcourt, D. C., Malova, H. V., & Zelenyi, L. M. ( 2006 ). Quasi‐adiabaticity in bifurcated current sheets. Geophysical Research Letters, 33, L06106. https://doi.org/10.1029/2005GL025463
dc.identifier.citedreferenceDelcourt, D. C., Sauvaud, J. A., Martin, R. F., & Moore, T. E. ( 1995 ). Gyrophase effects in the centrifugal impulse model of particle motion in the magnetotail. Journal of Geophysical Research, 100 ( A9 ), 17211 – 17220. https://doi.org/10.1029/95JA00657
dc.identifier.citedreferenceDelcourt, D. C., Sauvaud, J.‐A., Martin, R. F., & Moore, T. E. ( 1996 ). On the nondiabetic precipitation of ions from the near‐Earth plasma sheet. Journal of Geophysical Research, 101 ( A8 ), 17409 – 17418. https://doi.org/10.1029/96JA01006
dc.identifier.citedreferenceDelcourt, D. C., Zelenyi, L. M., & Sauvaud, J.‐A. ( 2000 ). Magnetic moment scattering in a field reversal with nonzero B y component. Journal of Geophysical Research, 105 ( A1 ), 349 – 359. https://doi.org/10.1029/1999JA900451
dc.identifier.citedreferenceDonovan, E. F., Jackel, B., Klumpar, D., & Strangeway, R. ( 2003 ). Energy dependence of the isotropy boundary latitude. In Proceedings of atmospheric studies by optical methods (Vol. 92, pp. 11 – 14 ). Sodankylä Geophysical Observatory Publications.
dc.identifier.citedreferenceDubyagin, S., Ganushkina, N., Apatenkov, S., Kubyshkina, M., Singer, H., & Liemohn, M. ( 2013 ). Geometry of duskside equatorial current during magnetic storm main phase as deduced from magnetospheric and low‐altitude observations. Annales Geophysicae, 31 ( 3 ), 395 – 408. https://doi.org/10.5194/angeo-31-395-2013
dc.identifier.citedreferenceDubyagin, S., Ganushkina, N. Y., & Sergeev, V. ( 2018 ). Formation of 30 keV proton isotropic boundaries during geomagnetic storms. Journal of Geophysical Research: Space Physics, 123 ( 5 ), 3436 – 3459. https://doi.org/10.1002/2017JA024587
dc.identifier.citedreferenceErlandson, R. E., & Ukhorskiy, A. J. ( 2001 ). Observations of electromagnetic ion cyclotron waves during geomagnetic storms: Wave occurrence and pitch angle scattering. Journal of Geophysical Research, 106 ( A3 ), 3883 – 3895. https://doi.org/10.1029/2000JA000083
dc.identifier.citedreferenceEvans, D., & Greer, M. ( 2004 ). Polar orbiting environmental satellite space environment monitor‐2 instrument descriptions and archive data documentation. NOAA Tech. Memo, 1, 4.
dc.identifier.citedreferenceGanushkina, N. Y., Pulkkinen, T. I., Kubyshkina, M. V., Sergeev, V. A., Lvova, E. A., Yahnina, T. A., et al. ( 2005 ). Proton isotropy boundaries as measured on mid‐ and low‐altitude satellites. Annales Geophysicae, 23, 1839 – 1847. https://doi.org/10.5194/angeo-23-1839-2005
dc.identifier.citedreferenceGvozdevsky, B. B., & Sergeev, V. A. ( 1996 ). MT‐index—A possible new index to characterize the configuration of the magnetotail. Advances in Space Research, 18 ( 8 ), 51 – 54. https://doi.org/10.1016/0273-1177(95)00995-7
dc.identifier.citedreferenceGvozdevsky, B. B., Sergeev, V. A., & Mursula, K. ( 1997 ). Long lasting energetic proton precipitation in the inner magnetosphere after substorms. Journal of Geophysical Research, 102 ( A11 ), 24333 – 24338. https://doi.org/10.1029/97JA02062
dc.identifier.citedreferenceHaiducek, J. D., Ganushkina, N. Y., Dubyagin, S., & Welling, D. T. ( 2019a ). On the accuracy of adiabaticity parameter estimations using magnetospheric models. Journal of Geophysical Research: Space Physics, 124 ( 3 ), 1785 – 1805. https://doi.org/10.1029/2018JA025916
dc.identifier.citedreferenceHaiducek, J. D., Ganushkina, N. Y., Dubyagin, S., & Welling, D. T. ( 2019b ). The role of current sheet scattering in the proton isotropic boundary formation during geomagnetic storms. Journal of Geophysical Research: Space Physics, 124 ( 5 ), 3468 – 3486. https://doi.org/10.1029/2018JA026290
dc.identifier.citedreferenceHalford, A. J., Fraser, B. J., & Morley, S. K. ( 2010 ). Emic wave activity during geomagnetic storm and nonstorm periods: CRRES results. Journal of Geophysical Research, 115, A12248. https://doi.org/10.1029/2010JA015716
dc.identifier.citedreferenceIlie, R., Ganushkina, N., Toth, G., Dubyagin, S., & Liemohn, M. W. ( 2015 ). Testing the magnetotail configuration based on observations of low‐altitude isotropic boundaries during quiet times. Journal of Geophysical Research: Space Physics, 120 ( 12 ), 10557 – 10573. https://doi.org/10.1002/2015JA021858
dc.identifier.citedreferenceKaufmann, R. L., & Lu, C. ( 1993 ). Cross‐tail current: Resonant orbits. Journal of Geophysical Research, 98 ( A9 ), 15447 – 15465. https://doi.org/10.1029/93JA01464
dc.identifier.citedreferenceKeika, K., Takahashi, K., Ukhorskiy, A. Y., & Miyoshi, Y. ( 2013 ). Global characteristics of electromagnetic ion cyclotron waves: Occurrence rate and its storm dependence. Journal of Geophysical Research: Space Physics, 118 ( 7 ), 4135 – 4150. https://doi.org/10.1002/jgra.50385
dc.identifier.citedreferenceKennel, C. F., & Petschek, H. E. ( 1966 ). Limit on stably trapped particle fluxes. Journal of Geophysical Research, 71 ( 1 ), 1 – 28. https://doi.org/10.1029/JZ071i001p00001
dc.identifier.citedreferenceKubyshkina, M. V., Sergeev, V. A., & Pulkkinen, T. I. ( 1999 ). Hybrid input algorithm: An event‐oriented magnetospheric model. Journal of Geophysical Research, 104 ( A11 ), 24977 – 24993. https://doi.org/10.1029/1999JA900222
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.