Show simple item record

Improving predictions of tropical tree survival and growth by incorporating measurements of whole leaf allocation

dc.contributor.authorRubio, Vanessa E.
dc.contributor.authorZambrano, Jenny
dc.contributor.authorIida, Yoshiko
dc.contributor.authorUmaña, María Natalia
dc.contributor.authorSwenson, Nathan G.
dc.date.accessioned2021-04-06T02:10:01Z
dc.date.available2022-04-05 22:10:00en
dc.date.available2021-04-06T02:10:01Z
dc.date.issued2021-03
dc.identifier.citationRubio, Vanessa E.; Zambrano, Jenny; Iida, Yoshiko; Umaña, María Natalia ; Swenson, Nathan G. (2021). "Improving predictions of tropical tree survival and growth by incorporating measurements of whole leaf allocation." Journal of Ecology (3): 1331-1343.
dc.identifier.issn0022-0477
dc.identifier.issn1365-2745
dc.identifier.urihttps://hdl.handle.net/2027.42/167027
dc.description.abstractIndividual‐level demographic outcomes should be predictable upon the basis of traits. However, linking traits to tree performance has proven challenging likely due to a failure to consider physiological traits (i.e. hard‐traits) and the failure to integrate organ‐level and whole plant‐level trait information.Here, we modelled the survival rate and relative growth rate of trees while considering crown allocation, hard‐traits and local‐scale biotic interactions, and compared these models to more traditional trait‐based models of tree performance.We found that an integrative trait, total tree‐level photosynthetic mass (estimated by multiplying specific leaf area and crown area) results in superior models of tree survival and growth. These models had a lower AIC than those including the effect of initial tree size or any other combination of the traits considered. Survival rates were positively related to higher values of crown area and photosynthetic mass, while relative growth rates were negatively related to the photosynthetic mass. Relative growth rates were negatively related to a neighbourhood crowding index. Furthermore, none of the hard‐traits used in this study provided an improvement in tree performance models.Synthesis. Overall, our results highlight that models of tree performance can be greatly improved by including crown area information to generate a better understanding of plant responses to their environment. Additionally, the role of the hard‐traits in improving models of tree performance is likely dependent upon the level of stress (e.g. drought stress), micro‐environmental conditions or short‐term climatic variations that a particular forest experiences.Our results highlight that models of tree performance can be greatly improved by including crown area information to generate a better understanding of plant responses to their environment. Additionally, the role of the hard‐traits in improving models of tree performance is likely dependent upon the level of stress (e.g. drought stress), micro‐environmental conditions or short‐term climatic variations that a particular forest experiences.
dc.publisherCAB International
dc.publisherWiley Periodicals, Inc.
dc.subject.otherforest ecology
dc.subject.otherfunctional trait
dc.subject.othertrait integration
dc.subject.othercommunity ecology
dc.subject.otherdemographic rate
dc.titleImproving predictions of tropical tree survival and growth by incorporating measurements of whole leaf allocation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167027/1/jec13560.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167027/2/jec13560_am.pdf
dc.identifier.doi10.1111/1365-2745.13560
dc.identifier.sourceJournal of Ecology
dc.identifier.citedreferenceSantiago, L. S., De Guzman, M. E., Baraloto, C., Vogenberg, J. E., Brodie, M., Hérault, B., Fortunel, C., & Bonal, D. ( 2018 ). Coordination and trade‐offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 18, 1015 – 1024. https://doi.org/10.1111/nph.15058
dc.identifier.citedreferenceSwenson, N. G., Iida, Y., & Rubio, V. E. ( 2020 ). Data from: Improving predictions of tropical tree survival and growth by incorporating measurements of whole leaf allocation. Dryad Digital Repository, https://doi.org/10.5061/dryad.4mw6m908c
dc.identifier.citedreferenceSack, L., Scoffoni, C., John, G. P., Poorter, H., Mason, C. M., Mendez‐Alonzo, R., & Donovan, L. A. ( 2013 ). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. Journal of Experimental Botany, 64 ( 13 ), 4053 – 4080. https://doi.org/10.1093/jxb/ert316
dc.identifier.citedreferenceMcGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. ( 2006 ). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21 ( 4 ), 178 – 185. https://doi.org/10.1016/j.tree.2006.02.002
dc.identifier.citedreferenceSantiago, L. S., Goldstein, G., Meinzer, F. C., Fisher, J. B., Machado, K., Woodruff, D., & Jones, T. ( 2004 ). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140 ( 4 ), 543 – 550. https://doi.org/10.1007/s00442‐004‐1624‐1
dc.identifier.citedreferenceSeibt, U., Rajabi, A., Griffiths, H., & Berry, J. A. ( 2008 ). Carbon isotopes and water use efficiency: Sense and sensitivity. Oecologia, 155 ( 3 ), 441 – 454. https://doi.org/10.1007/s00442‐007‐0932‐7
dc.identifier.citedreferenceSong, C. J., Ma, K. M., Qu, L. Y., Liu, Y., Xu, X. L., Fu, B. J., & Zhong, J. F. ( 2010 ). Interactive effects of water, nitrogen and phosphorus on the growth, biomass partitioning and water‐use efficiency of Bauhinia faberi seedlings. Journal of Arid Environments, 74 ( 9 ), 1003 – 1012. https://doi.org/10.1016/j.jaridenv.2010.02.003
dc.identifier.citedreferenceSwenson, N. G., Iida, Y., Howe, R., Wolf, A., Umaña, M. N., Petprakob, K., Turner, B. L., & Ma, K. ( 2017 ). Tree co‐occurrence and transcriptomic response to drought. Nature Communications, 8 ( 1 ), 1 – 9. https://doi.org/10.1038/s41467‐017‐02034‐w
dc.identifier.citedreferenceSwenson, N. G., Stegen, J. C., Davies, S. J., Erickson, D. L., Forero‐Montaña, J., Hurlbert, A. H., Kress, W. J., Thompson, J., Uriarte, M., Wright, S. J., & Zimmerman, J. K. ( 2012 ). Temporal turnover in the composition of tropical tree communities: Functional determinism and phylogenetic stochasticity. Ecology, 93, 490 – 499. https://doi.org/10.1890/11‐1180.1
dc.identifier.citedreferenceSwenson, N. G., & Umana, M. N. ( 2015 ). Data from: Interspecific functional convergence and divergence and intraspecific negative density dependence underlie the seed‐to‐seedling transition in tropical trees. Dryad Digital Repository, https://doi.org/10.5061/dryad.j2r53
dc.identifier.citedreferenceUmaña, M. N., Forero‐Montaña, J., Muscarella, R., Nytch, C. J., Thompson, J., Uriarte, M., Zimmerman, J., & Swenson, N. G. ( 2015 ). Interspecific functional convergence and divergence and intraspecific negative density dependence underlie the seed‐to‐seedling transition in tropical trees. The American Naturalist, 187 ( 1 ), 99 – 109. https://doi.org/10.1086/684174
dc.identifier.citedreferenceUmaña, M. N., Zhang, C., Cao, M., Lin, L., & Swenson, N. G. ( 2017 ). A core‐transient framework for trait‐based community ecology: An example from a tropical tree seedling community. Ecology Letters, 20, 619 – 628. https://doi.org/10.1111/ele.12760
dc.identifier.citedreferenceUriarte, M., Canham, C. D., Thompson, J., & Zimmerman, J. K. ( 2004 ). A neighbourhood analysis of tree growth and survival in a hurricane‐driven tropical forest. Ecological Monographs, 74, 591 – 614.
dc.identifier.citedreferenceUriarte, M., Swenson, N. G., Chazdon, R. L., Comita, L. S., Kress, W. J., Erickson, D., Forero‐Montaña, J., Zimmerman, J. K., & Thompson, J. ( 2010 ). Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: Implications for community assembly. Ecology Letters, 13, 1503 – 1514. https://doi.org/10.1111/j.1461‐0248.2010.01541.x
dc.identifier.citedreferenceWeiner, J. ( 1990 ). Asymmetric competition in plant populations. Trends in Ecology & Evolution, 5, 360 – 364. https://doi.org/10.1016/0169‐5347(90)90095‐U
dc.identifier.citedreferenceWestoby, M. ( 1998 ). A leaf‐height‐seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213 – 227.
dc.identifier.citedreferenceWestoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. ( 2002 ). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125 – 159. https://doi.org/10.1146/annurev.ecolsys.33.010802.150452
dc.identifier.citedreferenceWorthy, S. J., & Swenson, N. G. ( 2019 ). Functional perspectives on tropical tree demography and forest dynamics. Ecological Processes, 8, 1. https://doi.org/10.1186/s13717‐018‐0154‐4
dc.identifier.citedreferenceWright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender‐Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. ( 2004 ). The worldwide leaf economics spectrum. Nature, 428 ( 6985 ), 821 – 827. https://doi.org/10.1038/nature02403
dc.identifier.citedreferenceWright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Díaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz‐Jaen, M. C., Salvador, C. M., & Zanne, A. E. ( 2010 ). Functional traits and the growth—Mortality trade‐off in tropical trees. Ecology, 91 ( 12 ), 3664 – 3674. https://doi.org/10.1890/09‐2335.1
dc.identifier.citedreferenceYan, Y. ( 2016 ). MLmetrics: Machine learning evaluation metrics. R package version 1.1.1. Retrieved from https://CRAN.R‐project.org/package=MLmetrics
dc.identifier.citedreferenceYang, J., Cao, M., & Swenson, N. G. ( 2018 ). Why functional traits do not predict tree demographic rates. Trends in Ecology & Evolution, 33 ( 5 ), 326 – 336. https://doi.org/10.1016/j.tree.2018.03.003
dc.identifier.citedreferenceYang, J., Song, X., Cao, M., Deng, X., Zhang, W., Yang, X., & Swenson, N. G. ( 2020 ). On the modeling of tropical tree growth: The importance of intra‐specific trait variation, non‐linear functions and phenotypic integration. Annals of Botany, 1 – 10. https://doi.org/10.1093/aob/mcaa085
dc.identifier.citedreferenceZambrano, J., Beckman, N. G., Marchand, P., Thompson, J., Uriarte, M., Zimmerman, J. K., Umaña, M. N., & Swenson, N. G. ( 2020 ). The scale dependency of trait‐based tree neighbourhood models. Journal of Vegetation Science, 31, 581 – 593.
dc.identifier.citedreferenceZambrano, J., Fagan, W. F., Worthy, S. J., Thompson, J., Uriarte, M., Zimmerman, J. K., Umaña, M. N., & Swenson, N. G. ( 2019 ). Tree crown overlap improves predictions of the functional neighbourhood effects on tree survival and growth. Journal of Ecology, 107, 887 – 900.
dc.identifier.citedreferenceZambrano, J., Marchand, P., & Swenson, N. G. ( 2017 ). Local neighbourhood and regional climatic contexts interact to explain tree performance. Proceedings of the Royal Society B: Biological Sciences, 284, 20170523. https://doi.org/10.1098/rspb.2017.0523
dc.identifier.citedreferenceZimmerman, J. ( 2010 ). Census of species, diameter and location at the Luquillo Forest Dynamics Plot (LFDP), Puerto Rico. Environmental Data Initiative. https://doi.org/10.6073/pasta/6061298660b4ceb806ba49805a950646
dc.identifier.citedreferenceAngert, A. L., Huxman, T. E., Barron‐Gafford, G. A., Gerst, K. L., & Venable, D. L. ( 2007 ). Linking growth strategies to long‐term population dynamics in a guild of desert annuals. Journal of Ecology, 95 ( 2 ), 321 – 331. https://doi.org/10.1111/j.1365‐2745.2006.01203.x
dc.identifier.citedreferenceArnold, S. J. ( 1983 ). Morphology, performance and fitness. American Zoologist, 23, 347 – 361.
dc.identifier.citedreferenceBaraloto, C., Timothy Paine, C. E., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.‐M., Hérault, B., Patiño, S., Roggy, J.‐C., & Chave, J. ( 2010 ). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13 ( 11 ), 1338 – 1347. https://doi.org/10.1111/j.1461‐0248.2010.01517.x
dc.identifier.citedreferenceBartoń, K. ( 2018 ). MuMIn: Multi‐model inference. R package version 1.42.1. Retrieved from https://CRAN.R‐project.org/package=MuMIn
dc.identifier.citedreferenceBates, D., Mächler, M., Bolker, B., & Walker, S. ( 2015 ). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67 ( 1 ), 1 – 48. https://doi.org/10.18637/jss.v067.i01
dc.identifier.citedreferenceBazzaz, F. A., Ackerly, D. D., & Reekie, E. G. ( 2000 ). Reproductive allocation in plants. In M. Fenner (Ed.), Seeds. The ecology of regeneration in plant communities (pp. 1 – 29 ). CAB International. https://doi.org/10.1016/B978‐012088386‐8/50001‐6
dc.identifier.citedreferenceBrodribb, T. J., Feild, T. S., & Jordan, G. J. ( 2007 ). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144 ( 4 ), 1890 – 1898. https://doi.org/10.1104/pp.107.101352
dc.identifier.citedreferenceBrück, H., Payne, W. A., & Sattelmacher, B. ( 2000 ). Effects of phosphorus and water supply on yield, transpirational water‐use efficiency, and carbon isotope discrimination of pearl millet. Crop Science, 40 ( 1 ), 120 – 125. https://doi.org/10.2135/cropsci2000.401120x
dc.identifier.citedreferenceBurnham, K. P., & Anderson, D. R. ( 2002 ). Model selection and inference: A practical information‐theoretic approach ( 2nd ed. ). Springer‐Verlag. https://doi.org/10.1007/b97636
dc.identifier.citedreferenceCanham, C. D., LePage, P. T., & Coates, K. D. ( 2004 ). A neighbourhood analysis of canopy tree competition: Effects of shading versus crowding. Canadian Journal of Forest Research, 34, 778 – 787. https://doi.org/10.1139/x03‐232
dc.identifier.citedreferenceChadwick, R., Good, P., Martin, G., & Rowell, D. P. ( 2016 ). Large rainfall changes consistently projected over substantial areas of tropical land. Nature Climate Change, 6, 177 – 181. https://doi.org/10.1038/nclimate2805
dc.identifier.citedreferenceChave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. ( 2009 ). Towards a worldwide wood economics spectrum. Ecology Letters, 12 ( 4 ), 351 – 366. https://doi.org/10.1111/j.1461‐0248.2009.01285.x
dc.identifier.citedreferenceChesson, P. ( 2000 ). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343 – 366.
dc.identifier.citedreferenceCorreia, I., Almeida, M. H., Aguiar, A., Alía, R., David, T. S., & Pereira, J. S. ( 2008 ). Variations in growth, survival and carbon isotope composition (delta(13)C) among Pinus pinaster populations of different geographic origins. Tree Physiology, 28 ( 10 ), 1545 – 1552. https://doi.org/10.1093/treephys/28.10.1545
dc.identifier.citedreferenceDawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., & Tu, K. P. ( 2002 ). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33, 507 – 559. https://doi.org/10.1146/annurev.ecolsys.33.020602.095451
dc.identifier.citedreferenceDiaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J., Jalili, A., Montserrat‐Martí, G., Grime, J. P., Zarrinkamar, F., Asri, Y., Band, S. R., Basconcelo, S., Castro‐Díez, P., Funes, G., Hamzehee, B., Khoshnevi, M., Pérez‐Harguindeguy, N., Pérez‐Rontomé, M. C., Shirvany, F. A., … Zak, M. R. ( 2004 ). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15, 295 – 304. https://doi.org/10.1111/j.1654‐1103.2004.tb02266.x
dc.identifier.citedreferenceEnquist, B. J., Kerkhoff, A. J., Stark, S. C., Swenson, N. G., McCarthy, M. C., & Price, C. A. ( 2007 ). A general integrative model for scaling plant growth and functional trait spectra. Nature, 449, 218 – 222. https://doi.org/10.1038/nature06061
dc.identifier.citedreferenceEnquist, B. J., West, G. B., Charnov, E. L., & Brown, J. H. ( 1999 ). Allometric scaling of production and life‐history variation in vascular plants. Nature, 401 ( 6756 ), 907 – 911. https://doi.org/10.1038/44819
dc.identifier.citedreferenceFalster, D. S., Brännström, Å., Dieckmann, U., & Westoby, M. ( 2011 ). Influence of four major plant traits on average height, leaf‐area cover, net primary productivity, and biomass density in single‐species forests: A theoretical investigation. Journal of Ecology, 99, 148 – 164.
dc.identifier.citedreferenceFalster, D. C., Duursma, R. A., & FitzJohn, R. G. ( 2018 ). How functional traits influence plant growth and shade tolerance across the life cycle. Proceedings of the National Academy of Sciences of the United States of America, 115 ( 29 ), E6789 – E6798. https://doi.org/10.1073/pnas.1714044115
dc.identifier.citedreferenceFarquhar, G. D., O’Leary, M. H., & Berry, J. A. ( 1982 ). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9, 121 – 137. https://doi.org/10.1071/PP9820121
dc.identifier.citedreferenceGarnier, E. ( 1991 ). Resource capture, biomass allocation and growth in herbaceous plants. Trends in Ecology & Evolution, 6, 126 – 131. https://doi.org/10.1016/0169‐5347(91)90091‐B
dc.identifier.citedreferenceGebrekirstos, A., van Noordwijk, M., Neufeldt, H., & Mitlöhner, R. ( 2011 ). Relationships of stable carbon isotopes, plant water potential and growth: An approach to asses water use efficiency and growth strategies of dry land agroforestry species. Trees – Structure and Function, 25 ( 1 ), 95 – 102. https://doi.org/10.1007/s00468‐010‐0467‐0
dc.identifier.citedreferenceGibert, A., Gray, E. F., Westoby, M., Wright, I. J., & Falster, D. S. ( 2016 ). On the link between functional traits and growth rate: A meta‐analysis shows effects change with plant size, as predicted. Journal of Ecology, 104, 1488 – 1503. https://doi.org/10.1111/1365‐2745.12594
dc.identifier.citedreferenceGleason, S. M., Blackman, C. J., Chang, Y., Cook, A. M., Laws, C. A., & Westoby, M. ( 2016 ). Weak coordination among petiole, leaf, vein, and gas‐exchange traits across Australian angiosperm species and its possible implications. Ecology and Evolution, 6, 267 – 278. https://doi.org/10.1002/ece3.1860
dc.identifier.citedreferenceGrime, J. P., Thompson, K., Hunt, R., Hodgson, J. G., Cornelissen, J. H. C., Rorison, I. H., Hendry, G. A. F., Ashenden, T. W., Askew, A. P., Band, S. R., Booth, R. E., Bossard, C. C., Campbell, B. D., Cooper, J. E. L., Davison, A. W., Gupta, P. L., Hall, W., Hand, D. W., Hannah, M. A., … Whitehouse, J. ( 1997 ). Integrated screening validates primary axes of specialization in plants. Oikos, 79, 259 – 281. https://doi.org/10.2307/3546011
dc.identifier.citedreferenceHastie, T., Tibshirani, R., & Friedman, J. H. ( 2009 ). The elements of statistical learning: Data mining, inference, and prediction ( 2nd ed. ). Springer.
dc.identifier.citedreferenceHodgson, J. G., Wilson, P. J., Hunt, R., Grime, J. P., & Thompson, K. ( 1999 ). Allocating C‐S‐R plant functional types: A soft approach to a hard problem. Oikos, 85, 282 – 294. https://doi.org/10.2307/3546494
dc.identifier.citedreferenceHubbell, S. P., Ahumada, J. A., Condit, R., & Foster, R. B. ( 2001 ). Local neighbourhood effects on long‐term survival of individual trees in a neotropical forest. Ecological Research, 16, 859 – 875.
dc.identifier.citedreferenceHunt, R. ( 1978 ). Plant growth analysis. Edward Arnold Limited.
dc.identifier.citedreferenceIida, Y., Kohyama, T. S., Swenson, N. G., Su, S. H., Chen, C. T., Chiang, J. M., & Sun, I. F. ( 2014 ). Linking functional traits and demographic rates in a subtropical tree community: The importance of size dependency. Journal of Ecology, 102 ( 3 ), 641 – 650. https://doi.org/10.1111/1365‐2745.12221
dc.identifier.citedreferenceIida, Y., Poorter, L., Sterck, F., Kassim, A. R., Potts, M. D., Kubo, T., & Takashi, S. K. ( 2014 ). Linking size‐dependent growth and mortality with architectural traits across 145 co‐occurring tropical tree species. Ecology, 95 ( 2 ), 353 – 363.
dc.identifier.citedreferenceIida, Y., Sun, I. F., Price, C. A., Chen, C. T., Chen, Z. S., Chiang, J. M., Huan, C. L., & Swenson, N. G. ( 2016 ). Linking leaf veins to growth and mortality rates: An example from a subtropical tree community. Ecology and Evolution, 6 ( 17 ), 6085 – 6096. https://doi.org/10.1002/ece3.2311
dc.identifier.citedreferenceIida, Y., & Swenson, N. G. ( 2020 ). Towards linking species traits to demography and assembly in diverse tree communities: Revisiting the importance of size and allocation. Ecological Research, 35, 947 – 966. https://doi.org/10.1111/1440‐1703.12175
dc.identifier.citedreferenceJames, G., Witten, D., Hastie, T., & Tibshirani, R. ( 2013 ). An introduction to statistical learning with applications in R. Springer.
dc.identifier.citedreferenceKröbel, R., Campbell, C. A., Zentner, R. P., Lemke, R., Steppuhn, H., Desjardins, R. L., & De Jong, R. ( 2012 ). Nitrogen and phosphorus effects on water use efficiency of spring wheat grown in a semi‐arid region of the Canadian prairies. Canadian Journal of Soil Science, 92 ( 4 ), 573 – 587. https://doi.org/10.4141/cjss2011‐055
dc.identifier.citedreferenceLavorel, S., & Garnier, E. ( 2002 ). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545 – 556.
dc.identifier.citedreferenceLiu, X., Swenson, N. G., Lin, D., Mi, X., Umana, M. N., Schmid, B., & Ma, K. ( 2016 ). Linking individual‐level traits to tree growth in a subtropical forest. Ecology, 97, 2396 – 2405. https://doi.org/10.1002/ecy.1445
dc.identifier.citedreferenceNiinemets, Ü., Portsmuth, A., & Tobias, D. ( 2007 ). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: A neglected source of leaf physiological differentiation? Functional Ecology, 21, 28 – 40.
dc.identifier.citedreferenceNiklas, K. J., & Enquist, B. J. ( 2001 ). Invariant scaling relationship for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences of the United States of America, 98, 2922 – 2927.
dc.identifier.citedreferencePacala, S., & Silander, J. A. ( 1985 ). Neighbourhood models of plant population dynamics. I. Single‐species models of annuals. The American Naturalist, 125 ( 3 ), 385 – 411.
dc.identifier.citedreferencePaine, C. E. T., Amissah, L., Auge, H., Baraloto, C., Baruffol, M., Bourland, N., Bruelheide, H., Daïnou, K., de Gouvenain, R. C., Doucet, J.‐L., Doust, S., Fine, P. V. A., Fortunel, C., Haase, J., Holl, K. D., Jactel, H., Li, X., Kitajima, K., Koricheva, J., … Hector, A. ( 2015 ). Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 103 ( 4 ), 978 – 989. https://doi.org/10.1111/1365‐2745.12401
dc.identifier.citedreferencePoorter, H. ( 1989 ). Interspecific variation in relative growth rate: On ecological causes and physiological consequences. In H. Lambers, M. L. Cambridge, H. Konings, & T. L. Pons (Eds.), Causes and consequences of variation in growth rate and productivity in higher plants (pp. 45 – 68 ). SPB Academic Publishing.
dc.identifier.citedreferencePoorter, H., & Villar, R. ( 1997 ). The fate of acquired carbon in plants: Chemical composition and construction costs. In F. A. Bazzaz & J. Grace (Eds.), Plant resource allocation (pp. 39 – 72 ). Academic Press.
dc.identifier.citedreferencePoorter, L., Bongers, F., Sterck, F. J., & Wöll, H. ( 2005 ). Beyond the regeneration phase: Differentiation of height‐light trajectories among tropical tree species. Journal of Ecology, 93 ( 2 ), 256 – 267. https://doi.org/10.1111/j.1365‐2745.2004.00956.x
dc.identifier.citedreferencePoorter, L., Wright, S. J., Paz, H., Ackerly, D. D., Condit, R., Ibarra‐Manríquez, G., Harms, K. E., Licona, J. C., Martínez‐Ramos, M., Mazer, S. J., Muller‐Landau, H. C., Peña‐Claros, M., Webb, C. O., & Wright, I. J. ( 2008 ). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89 ( 7 ), 1908 – 1920. https://doi.org/10.1890/07‐0207.1
dc.identifier.citedreferenceR Development Core Team. ( 2018 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R‐project.org/
dc.identifier.citedreferenceRees, M. ( 1996 ). Evolutionary ecology of seed dormancy and seed size. Philosophical Transactions of the Royal Society B: Biological Sciences, 351 ( 1345 ).
dc.identifier.citedreferenceReich, P. B., Walters, M. B., & Ellsworth, D. S. ( 1997 ). From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94 ( 25 ), 13730 – 13734. https://doi.org/10.1073/pnas.94.25.13730
dc.identifier.citedreferenceResa, M. D. L. A., Emir, B., & Cabrera, J. ( 2017 ). qrmix: Quantile regression mixture models. R package version 0.9.0. Retrieved from https://CRAN.R‐project.org/package=qrmix
dc.identifier.citedreferenceRubio, V. E., Zambrano, J., Iida, Y., Umaña, M. N., & Swenson, N. G. ( 2020 ). Data from: Code for Improving predictions of tropical tree survival and growth by incorporating a measurement of whole leaf allocation. Zenodo, https://doi.org/10.5281/zenodo.4273902
dc.identifier.citedreferenceSack, L., & Frole, K. ( 2006 ). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 87 ( 2 ), 483 – 491. https://doi.org/10.1890/05‐0710
dc.identifier.citedreferenceSack, L., & Scoffoni, C. ( 2013 ). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983 – 1000. https://doi.org/10.1111/nph.12253
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.