Show simple item record

Fossil Versus Nonfossil CO Sources in the US: New Airborne Constraints From ACT‐America and GEM

dc.contributor.authorGonzalez, Andres
dc.contributor.authorMillet, Dylan B.
dc.contributor.authorYu, Xueying
dc.contributor.authorWells, Kelley C.
dc.contributor.authorGriffis, Timothy J.
dc.contributor.authorBaier, Bianca C.
dc.contributor.authorCampbell, Patrick C.
dc.contributor.authorChoi, Yonghoon
dc.contributor.authorDiGangi, Joshua P.
dc.contributor.authorGvakharia, Alexander
dc.contributor.authorHalliday, Hannah S.
dc.contributor.authorKort, Eric A.
dc.contributor.authorMcKain, Kathryn
dc.contributor.authorNowak, John B.
dc.contributor.authorPlant, Genevieve
dc.date.accessioned2021-07-01T20:11:54Z
dc.date.available2022-07-01 16:11:52en
dc.date.available2021-07-01T20:11:54Z
dc.date.issued2021-06-16
dc.identifier.citationGonzalez, Andres; Millet, Dylan B.; Yu, Xueying; Wells, Kelley C.; Griffis, Timothy J.; Baier, Bianca C.; Campbell, Patrick C.; Choi, Yonghoon; DiGangi, Joshua P.; Gvakharia, Alexander; Halliday, Hannah S.; Kort, Eric A.; McKain, Kathryn; Nowak, John B.; Plant, Genevieve (2021). "Fossil Versus Nonfossil CO Sources in the US: New Airborne Constraints From ACT‐America and GEM." Geophysical Research Letters 48(11): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/168306
dc.description.abstractCarbon monoxide (CO) is an ozone precursor, oxidant sink, and widely used pollution tracer. The importance of anthropogenic versus other CO sources in the US is uncertain. Here, we interpret extensive airborne measurements with an atmospheric model to constrain US fossil and nonfossil CO sources. Measurements reveal a low bias in the simulated CO background and a 30% overestimate of US fossil CO emissions in the 2016 National Emissions Inventory. After optimization we apply the model for source partitioning. During summer, regional fossil sources account for just 9%–16% of the sampled boundary layer CO, and 32%–38% of the North American enhancement—complicating use of CO as a fossil fuel tracer. The remainder predominantly reflects biogenic hydrocarbon oxidation plus fires. Fossil sources account for less domain‐wide spatial variability at this time than nonfossil and background contributions. The regional fossil contribution rises in other seasons, and drives ambient variability downwind of urban areas.Plain Language SummaryCarbon monoxide (CO) is an air pollutant emitted from fossil fuel combustion and from forest and agricultural fires. CO is also produced in the atmosphere through the oxidation of hydrocarbons from both natural and human‐caused sources. US fossil fuel CO emissions have been declining in recent years, and their current importance relative to other regional sources is uncertain. Here, we interpreted a large group of aircraft‐based CO measurements with a high‐resolution atmospheric model to better quantify US fossil and nonfossil fuel CO sources over the eastern half of the US. We find that US fossil fuel CO emissions in the 2016 National Emissions Inventory are overestimated by ∼30%. Furthermore, during summer regional fossil fuel sources account for only a small fraction of the CO over North America compared to the background concentrations already present in air entering North America, and compared to the regional source from natural hydrocarbon oxidation. This complicates the use of CO as a tracer for estimating fossil fuel sources of other pollutants such as carbon dioxide.Key PointsWe interpret an ensemble of airborne measurements with the GEOS‐Chem model to constrain US fossil fuel and nonfossil carbon monoxide (CO) sourcesMeasurements reveal an approximate 30% overestimate of US fossil fuel CO emissions in the National Emissions InventoryDuring summer regional fossil fuel sources account for just 9%–16% of total boundary layer CO over eastern North America
dc.publisherORNL DAAC
dc.publisherWiley Periodicals, Inc.
dc.titleFossil Versus Nonfossil CO Sources in the US: New Airborne Constraints From ACT‐America and GEM
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168306/1/2021GL093361-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168306/2/grl62480_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168306/3/grl62480.pdf
dc.identifier.doi10.1029/2021GL093361
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceKoster, R. D., Darmenov, A. S., & da Silva, A. M. ( 2015 ). The Quick Fire Emissions Dataset (QFED): Documentation of Versions 2.1, 2.2 and 2.4. Volume 38; Technical Report Series on Global Modeling and Data Assimilation. Retrieved from https://gmao.gsfc.nasa.gov/pubs/docs/Darmenov796.pdf
dc.identifier.citedreferenceDuncan, B. N., Logan, J. A., Bey, I., Megretskaia, I. A., Yantosca, R. M., Novelli, P. C., et al. ( 2007 ). Global budget of CO, 1988–1997: Source estimates and validation with a global model. Journal of Geophysical Research, 112, D22301. https://doi.org/10.1029/2007jd008459
dc.identifier.citedreferenceEPA ( 2019 ). Air pollutant emissions trends data. Retrieved from https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
dc.identifier.citedreferenceFisher, J. A., Murray, L. T., Jones, D. B. A., & Deutscher, N. M. ( 2017 ). Improved method for linear carbon monoxide simulation and source attribution in atmospheric chemistry models illustrated using GEOS‐Chem v9. Geoscientific Model Development, 10 ( 11 ), 4129 – 4144. https://doi.org/10.5194/gmd-10-4129-2017
dc.identifier.citedreferenceFriedlingstein, P., Jones, M., O’Sullivan, M., Andrew, R., Hauck, J., Peters, G., et al. ( 2019 ). Global carbon budget 2019. Earth System Science Data, 11 ( 4 ), 1783 – 1838. https://doi.org/10.5194/essd-11-1783-2019
dc.identifier.citedreferenceFujita, E. M., Campbell, D. E., Zielinska, B., Chow, J. C., Lindhjem, C. E., DenBleyker, A., et al. ( 2012 ). Comparison of the MOVES2010a, MOBILE6.2, and EMFAC2007 mobile source emission models with on‐road traffic tunnel and remote sensing measurements. Journal of the Air & Waste Management Association, 62 ( 10 ), 1134 – 1149. https://doi.org/10.1080/10962247.2012.699016
dc.identifier.citedreferenceGaubert, B., Worden, H. M., Arellano, A. F. J., Emmons, L. K., Tilmes, S., Barré, J., et al. ( 2017 ). Chemical feedback from decreasing carbon monoxide emissions. Geophysical Research Letters, 44 ( 19 ), 9985 – 9995. https://doi.org/10.1002/2017gl074987
dc.identifier.citedreferenceGvakharia, A., Kort, E. A., Smith, M. L., & Conley, S. ( 2018 ). Testing and evaluation of a new airborne system for continuous N 2 O, CO 2, CO, and H 2 O measurements: The frequent calibration high‐performance airborne observation system (FCHAOS). Atmospheric Measurement Techniques, 11 ( 11 ), 6059 – 6074. https://doi.org/10.5194/amt-11-6059-2018
dc.identifier.citedreferenceHalliday, H. S., DiGangi, J. P., Choi, Y., Diskin, G. S., Pusede, S. E., Rana, M., et al. ( 2019 ). Using short‐term CO/CO 2 ratios to assess air mass differences over the Korean peninsula during KORUS‐AQ. Journal of Geophysical Research: Atmospheres, 124 ( 20 ), 10951 – 10972. https://doi.org/10.1029/2018jd029697
dc.identifier.citedreferenceHoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens‐Maenhout, G., Pitkanen, T., et al. ( 2018 ). Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the community emission data system (CEDS). Geoscientific Model Development, 11, 369 – 408. https://doi.org/10.5194/gmd-11-369-2018
dc.identifier.citedreferenceHudman, R. C., Murray, L. T., Jacob, D. J., Millet, D. B., Turquety, S., Wu, S., et al ( 2008 ). Biogenic versus anthropogenic sources of CO in the United States. Geophysical Research Letters, 35, L04801. https://doi.org/10.1029/2007gl032393
dc.identifier.citedreferenceHu, L., Jacob, D. J., Liu, X., Zhang, Y., Zhang, L., Kim, P. S., et al. ( 2017 ). Global budget of tropospheric ozone: Evaluating recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde observations. Atmospheric Environment, 167, 323 – 334. https://doi.org/10.1016/j.atmosenv.2017.08.036
dc.identifier.citedreferenceHu, L., Millet, D. B., Baasandorj, M., Griffis, T. J., Turner, P., Helmig, D., et al. ( 2015 ). Isoprene emissions and impacts over an ecological transition region in the US Upper Midwest inferred from tall tower measurements. Journal of Geophysical Research: Atmospheres, 120 ( 8 ), 3553 – 3571. https://doi.org/10.1002/2014jd022732
dc.identifier.citedreferenceKim, S. Y., Millet, D. B., Hu, L., Mohr, M. J., Griffis, T. J., Wen, D., et al. ( 2013 ). Constraints on carbon monoxide emissions based on tall tower measurements in the U.S. upper Midwest. Environmental Science & Technology, 47 ( 15 ), 8316 – 8324. https://doi.org/10.1021/es4009486
dc.identifier.citedreferenceLucchesi, R. ( 2013 ). File specification for GEOS‐5 FP. GMAO Office Note No. 4 (Version 1.0). Retrieved from https://gmao.gsfc.nasa.gov/pubs/docs/Lucchesi617.pdf
dc.identifier.citedreferenceMillet, D. B., Conley, S. A., Gvakharia, A., Kort, E. A., Plant, G., Smith, M. L., & Yu, X. ( 2019 ). Airborne measurements from the GEM study. Retrieved from Data Repository for the University of Minnesota. https://doi.org/10.13020/f50r-zh70
dc.identifier.citedreferenceMüller, J. F., Stavrakou, T., Bauwens, M., George, M., Hurtmans, D., Coheur, P. F., et al. ( 2018 ). Top‐down CO emissions based on IASI observations and hemispheric constraints on OH Levels. Geophysical Research Letters, 45 ( 3 ), 1621 – 1629. https://doi.org/10.1002/2017gl076697
dc.identifier.citedreferenceNathan, B. J., Lauvaux, T., Turnbull, J. C., Richardson, S. J., Miles, N. L., & Gurney, K. R. ( 2018 ). Source sector attribution of CO 2 emissions using an urban CO/CO 2 Bayesian inversion system. Journal of Geophysical Research: Atmospheres, 123, 13611 – 13621. https://doi.org/10.1029/2018jd029231
dc.identifier.citedreferenceNational Emissions Inventory Collaborative (NEIC) ( 2019 ). 2016beta emissions modeling platform. Retrieved from http://views.cira.colostate.edu/wiki/wiki/10197
dc.identifier.citedreferenceNational Emissions Inventory (NEI) ( 2014 ). Air emissions inventories. Retrieved from https://edap.epa.gov/public/extensions/nei_report_2014/dashboard.html#sector-db
dc.identifier.citedreferenceNopmongcol, U., Grant, J., Knipping, E., Alexander, M., Schurhoff, R., Young, D., et al. ( 2017 ). Air quality impacts of electrifying vehicles and equipment across the United States. Environmental Science & Technology, 51 ( 5 ), 2830 – 2837. https://doi.org/10.1021/acs.est.6b04868
dc.identifier.citedreferenceParrish, D. D. ( 2006 ). Critical evaluation of US on‐road vehicle emission inventories. Atmospheric Environment, 40 ( 13 ), 2288 – 2300. https://doi.org/10.1016/j.atmosenv.2005.11.033
dc.identifier.citedreferencePlant, G., Kort, E. A., Floerchinger, C., Gvakharia, A., Vimont, I., & Sweeney, C. ( 2019 ). Large fugitive methane emissions from urban centers along the U.S. East Coast. Geophysical Research Letters, 46, 8500 – 8507. https://doi.org/10.1029/2019GL082635
dc.identifier.citedreferenceSalmon, O. E., Shepson, P. B., Ren, X., He, H., Hall, D. L., Dickerson, R. R., et al. ( 2018 ). Top‐down estimates of NO x and CO emissions from Washington, DC‐Baltimore during the WINTER campaign. Journal of Geophysical Research: Atmospheres, 123 ( 14 ), 7705 – 7724. https://doi.org/10.1029/2018jd028539
dc.identifier.citedreferenceShindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., & Bauer, S. E. ( 2009 ). Improved attribution of climate forcing to emissions. Science, 326 ( 5953 ), 716 – 718. https://doi.org/10.1126/science.1174760
dc.identifier.citedreferenceSuper, I., Denier van der Gon, H. A. C., Visschedijk, A. J. H., Moerman, M. M., Chen, H., Van der Molen, M. K., & Peters, W. ( 2017 ). Interpreting continuous in‐situ observations of carbon dioxide and carbon monoxide in the urban port area of Rotterdam. Atmospheric Pollution Research, 8 ( 1 ), 174 – 187. https://doi.org/10.1016/j.apr.2016.08.008
dc.identifier.citedreferenceWei, Y., Shrestha, R., Pal, S., Gerken, T., McNelis, J., Singh, D., et al. ( 2021 ). The ACT‐America datasets: Description, management and delivery. In press, Earth and Space Science. https://doi.org/10.1002/essoar.10505692.1
dc.identifier.citedreferenceWinkler, S. L., Anderson, J. E., Garza, L., Ruona, W. C., Vogt, R., & Wallington, T. J. ( 2018 ). Vehicle criteria pollutant (PM, NO x, CO, HCs) emissions: How low should we go? npj Climate and Atmospheric Science, 1 ( 1 ), 1 – 5. https://doi.org/10.1038/s41612-018-0037-5
dc.identifier.citedreferenceWofsy, S. C., Afshar, S., Allen, H. M., Apel, E. C., Asher, E. C., Barletta, B., et al. ( 2018 ). ATom: Merged atmospheric chemistry, trace gases, and aerosols. Oak Ridge, TN: ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1581
dc.identifier.citedreferenceYu, X., Millet, D. B., Wells, K. C., Griffis, T. J., Chen, X., Baker, J. M., et al. ( 2020 ). Top‐down constraints on methane point source emissions from animal agriculture and waste based on new airborne measurements in the US Upper Midwest. Journal of Geophysical Research: Biogeosciences, 125 ( 1 ), e2019JG005429. https://doi.org/10.1029/2019JG005429
dc.identifier.citedreferenceYu, X., Millet, D. B., Wells, K. C., Henze, D. K., Cao, H., Griffis, T. J., et al. ( 2021 ). Aircraft‐based inversions quantify the importance of wetlands and livestock for Upper Midwest methane emissions. Atmospheric Chemistry and Physics, 21 ( 2 ), 951 – 971. https://doi.org/10.5194/acp-21-951-2021
dc.identifier.citedreferenceACT (Atmospheric Carbon and Transport)‐America ( 2019 ). ACT‐America: L3 merged in situ atmospheric trace gases and flask data, eastern USA. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1593
dc.identifier.citedreferenceAPEI ( 2020 ). Canada’s air pollutant emissions inventory. Retrieved from https://open.canada.ca/data/en/dataset/fa1c88a8-bf78-4fcb-9c1e-2a5534b92131
dc.identifier.citedreferenceBaier, B. C., Sweeney, C., Choi, Y., Davis, K. J., DiGangi, J. P., Feng, S., et al. ( 2020 ). Multispecies assessment of factors influencing regional CO 2 and CH 4 enhancements during the winter 2017 ACT‐America campaign. Journal of Geophysical Research: Atmospheres, 125, e2019JD031339. https://doi.org/10.1029/2019JD031339
dc.identifier.citedreferenceBrioude, J., Angevine, W. M., Ahmadov, R., Kim, S. W., Evan, S., McKeen, S. A., et al. ( 2013 ). Top‐down estimate of surface flux in the Los Angeles basin using a mesoscale inverse modeling technique: Assessing anthropogenic emissions of CO, NO x and CO 2 and their impacts. Atmospheric Chemistry and Physics, 13 ( 7 ), 3661 – 3677. https://doi.org/10.5194/acp-13-3661-2013
dc.identifier.citedreferenceBrioude, J., Kim, S.‐W., Angevine, W. M., Frost, G. J., Lee, S.‐H., McKeen, S. A., et al. ( 2011 ). Top‐down estimate of anthropogenic emission inventories and their interannual variability in Houston using a mesoscale inverse modeling technique. Journal of Geophysical Research: Atmospheres, 116, D20305. https://doi.org/10.1029/2011jd016215
dc.identifier.citedreferenceCheng, Y., Wang, Y., Zhang, Y., Crawford, J. H., Diskin, G. S., Weinheimer, A. J., & Fried, A. ( 2018 ). Estimator of surface ozone using formaldehyde and carbon monoxide concentrations over the eastern United States in summer. Journal of Geophysical Research: Atmospheres, 123 ( 14 ), 7642 – 7655. https://doi.org/10.1029/2018JD028452
dc.identifier.citedreferenceChen, H., Karion, A., Rella, C. W., Winderlich, J., Gerbig, C., Filges, A., et al. ( 2013 ). Accurate measurements of carbon monoxide in humid air using the cavity ring‐down spectroscopy (CRDS) technique. Atmospheric Measurement Techniques, 6 ( 4 ), 1031 – 1040. https://doi.org/10.5194/amt-6-1031-2013
dc.identifier.citedreferenceDavis, K. J., Browell, E. V., Feng, S., Lauvaux, T., Obland, M. D., Pal, S., et al. ( 2021 ). The atmospheric carbon and transport (ACT)–America Mission. Bulletin of the American Meteorological Society, 102, 1 – 52. https://doi.org/10.1002/essoar.10505721.1
dc.identifier.citedreferenceDavis, K. J., Obland, M. D., Lin, B., Lauvaux, T., O’dell, C., Meadows, B., et al. ( 2018 ). ACT‐America: L3 merged in situ atmospheric trace gases and flask data, eastern USA. Oak Ridge, TN: ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1593
dc.identifier.citedreferenceDiGangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., Diskin, G. S., Feng, S., et al. ( 2021 ). Seasonal variability in local carbon dioxide combustion sources over the central and eastern US using airborne in‐situ enhancement ratios. In review, Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.10505716.1
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.