Show simple item record

An improved Poisson‐Nernst‐Planck ion channel model and numerical studies on effects of boundary conditions, membrane charges, and bulk concentrations

dc.contributor.authorChao, Zhen
dc.contributor.authorXie, Dexuan
dc.date.accessioned2021-09-08T14:37:41Z
dc.date.available2022-11-08 10:37:39en
dc.date.available2021-09-08T14:37:41Z
dc.date.issued2021-10-15
dc.identifier.citationChao, Zhen; Xie, Dexuan (2021). "An improved Poisson‐Nernst‐Planck ion channel model and numerical studies on effects of boundary conditions, membrane charges, and bulk concentrations." Journal of Computational Chemistry 42(27): 1929-1943.
dc.identifier.issn0192-8651
dc.identifier.issn1096-987X
dc.identifier.urihttps://hdl.handle.net/2027.42/169342
dc.description.abstractIn this paper, an improved Poisson‐Nernst‐Planck ion channel (PNPic) model is presented, along with its effective finite element solver and software package for an ion channel protein in a solution of multiple ionic species. Numerical studies are then done on the effects of boundary value conditions, membrane charges, and bulk concentrations on electrostatics and ionic concentrations for an ion channel protein, a gramicidin A (gA), and five different ionic solvents with up to four species. Numerical results indicate that the cation selectivity property of gA occurs within a central portion of ion channel pore, insensitively to any change of boundary value condition, membrane charge, or bulk concentration. Moreover, a numerical scheme for computing the electric currents induced by ion transports across membrane via an ion channel pore is presented and implemented as a part of the PNPic finite element package. It is then applied to the calculation of current–voltage curves, well validating the PNPic model and finite element package by electric current experimental data.In this study, we added 0.3 and 0.1 mol of KCl, respectively, to the bottom and top water compartments connected by a voltage‐dependent anion channel (VDAC with PDB ID: 3EMN) as the conduit of ions. We then generated the concentrations of K+ and Cl− and visualized them in color mappings and two‐dimensional curves by the Poisson‐Nernst‐Planck finite element package of this paper, clearly validating the anion selectivity of VDAC.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherfinite element method
dc.subject.otherPoisson‐Nernst‐Planck equations
dc.subject.otherion channel model
dc.subject.othercation selectivity
dc.subject.otherelectric current calculation
dc.titleAn improved Poisson‐Nernst‐Planck ion channel model and numerical studies on effects of boundary conditions, membrane charges, and bulk concentrations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169342/1/jcc26723.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169342/2/jcc26723_am.pdf
dc.identifier.doi10.1002/jcc.26723
dc.identifier.sourceJournal of Computational Chemistry
dc.identifier.citedreferenceD. Xie, Z. Chao, J. Comput. Phys. 2020, 423, 109915.
dc.identifier.citedreferenceA. Golovnev, S. Trimper, Phys. Lett. A 2010, 374, 2886.
dc.identifier.citedreferenceA. Golovnev, S. Trimper, J. Chem. Phys. 2011, 134, 154902.
dc.identifier.citedreferenceD. S. Bolintineanu, A. Sayyed‐Ahmad, H. T. Davis, Y. N. Kaznessis, PLoS Comput. Biol. 2009, 5, e1000277.
dc.identifier.citedreferenceA. E. Cardenas, R. D. Coalson, M. G. Kurnikova, Biophys. J. 2000, 79, 80.
dc.identifier.citedreferenceB. Lu, M. J. Holst, J. A. McCammon, Y. Zhou, J. Comput. Phys. 2010, 229, 6979.
dc.identifier.citedreferenceY. Song, Y. Zhang, T. Shen, C. L. Bajaj, J. A. McCammon, N. A. Baker, Biophys. J. 2004, 86, 2017.
dc.identifier.citedreferenceS. Yu, G. Wei, J. Comput. Phys. 2007, 227, 602.
dc.identifier.citedreferenceS. R. Mathur, J. Y. Murthy, Int. J. Heat Mass Transfer 2009, 52, 4031.
dc.identifier.citedreferenceM. Mirzadeh, F. Gibou, J. Comput. Phys. 2014, 274, 633.
dc.identifier.citedreferenceU. Hollerbach, D.‐P. Chen, R. S. Eisenberg, J. Sci.Comput. 2001, 16, 373.
dc.identifier.citedreferenceI.‐L. Chern, J.‐G. Liu, W.‐C. Wang, et al., Meth. Appl. Anal. 2003, 10, 309.
dc.identifier.citedreferenceD. Xie, J. Comput. Phys. 2014, 275, 294.
dc.identifier.citedreferenceD. Xie, S. H. Audi, R. K. Dash, J. Comput. Chem. 2020, 41, 218.
dc.identifier.citedreferenceM. Pekker, M. Shneider, J. Phys. Chem. Biophys. 2015, 5, 177.
dc.identifier.citedreferenceC. D. Cole, A. S. Frost, N. Thompson, M. Cotten, T. A. Cross, D. D. Busath, Biophysical Journal 2002, 83, 1974.
dc.identifier.citedreferenceZ. Chao Ph.D. Thesis, University of Wisconsin‐Milwaukee, USA 2020.
dc.identifier.citedreferenceT. Liu, S. Bai, B. Tu, M. Chen, B. Lu, Mol. Based Math. Biol. 2015, 3, 2299.
dc.identifier.citedreferenceJ. Ahrens, B. Geveci, C. Law, in The Visualization Handbook, Elsevier Butterworth–Heinemann, Boston 2005, Ch. 36.
dc.identifier.citedreferenceL. Zhang, T. Cui, H. Liu, J. Comput. Math. 2009, 27, 89.
dc.identifier.citedreferenceAutomated Solution of Differential Equations by the Finite Element Method (Eds: A. Logg, K.‐A. Mardal, G. N. Wells ), Vol. 84, Lecture Notes in Computational Science and Engineering, Springer Verlag, Berlin, Heidelberg 2012.
dc.identifier.citedreferenceK.‐C. Lee, S. Huo, T. Cross, Biochemistry 1995, 34, 857.
dc.identifier.citedreferenceB. Tu, M. Chen, Y. Xie, L. Zhang, B. Eisenberg, B. Lu, J. Comput. Chem. 2013, 34, 2065.
dc.identifier.citedreferenceD. W. Urry in Proc. of Fifth Jerusalem Symp. on Quantum Chemistry and Biochemistry (Ed: Ernst D), 1973, 723. Israel Academic of Sciences Jerusalem.
dc.identifier.citedreferenceM. J. Sampson, R. S. Lovell, W. J. Craigen, J. Biol. Chem. 1997, 272, 18966.
dc.identifier.citedreferenceT. Teorell, Prog. Biophys. Biophys. Chem. 1953, 3, 305.
dc.identifier.citedreferenceK. Meyer, J. Sievers, Helv. Chim. Acta 1936, 19, 649.
dc.identifier.citedreferenceJ. Manzanares, W. Murphy, S. Mafe, H. Reiss, J. Phys. Chem. 1993, 97, 8524.
dc.identifier.citedreferenceA. Moya, J. Horno, J. Phys. Chem. B 1999, 103, 10791.
dc.identifier.citedreferenceW. Liu, J. Diff. Equ. 2009, 246, 428.
dc.identifier.citedreferenceJ. W. Jerome, SIAM J. Appl. Math. 1985, 45, 565.
dc.identifier.citedreferenceM. Mock, Commun. Pure Appl. Math. 1972, 25, 781.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.