Show simple item record

Cellular immune responses in the pathophysiology of preeclampsia

dc.contributor.authorMiller, Derek
dc.contributor.authorMotomura, Kenichiro
dc.contributor.authorGalaz, Jose
dc.contributor.authorGershater, Meyer
dc.contributor.authorLee, Eun D.
dc.contributor.authorRomero, Roberto
dc.contributor.authorGomez-Lopez, Nardhy
dc.date.accessioned2022-01-06T15:51:30Z
dc.date.available2023-02-06 10:51:29en
dc.date.available2022-01-06T15:51:30Z
dc.date.issued2022-01
dc.identifier.citationMiller, Derek; Motomura, Kenichiro; Galaz, Jose; Gershater, Meyer; Lee, Eun D.; Romero, Roberto; Gomez-Lopez, Nardhy (2022). "Cellular immune responses in the pathophysiology of preeclampsia." Journal of Leukocyte Biology 111(1): 237-260.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/171226
dc.description.abstractPreeclampsia, defined as new- onset hypertension accompanied by proteinuria occurring at 20 weeks of gestation or later, is a leading cause of perinatal morbidity and mortality worldwide. The pathophysiology of this major multi- systemic syndrome includes defective deep placentation, oxidative stress, endothelial dysfunction, the presence of an anti- angiogenic state, and intravascular inflammation, among others. In this review, we provide a comprehensive overview of the cellular immune responses involved in the pathogenesis of preeclampsia. Specifically, we summarize the role of innate and adaptive immune cells in the maternal circulation, reproductive tissues, and at the maternal- fetal interface of women affected by this pregnancy complication. The major cellular subsets involved in the pathogenesis of preeclampsia are regulatory T cells, effector T cells, NK cells, monocytes, macrophages, and neutrophils. We also summarize the literature on those immune cells that have been less characterized in this clinical condition, such as γδ T cells, invariant natural killer T cells, dendritic cells, mast cells, and B cells. Moreover, we discuss in vivo studies utilizing a variety of animal models of preeclampsia to further support the role of immune cells in this disease. Finally, we highlight the existing gaps in knowledge of the immunobiology of preeclampsia that require further investigation. The goal of this review is to promote translational research leading to clinically relevant strategies that can improve adverse perinatal outcomes resulting from the obstetrical syndrome of preeclampsia.Graphical AbstractInnate and adaptive immune cell responses in women with preeclampsia
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpregnancy
dc.subject.otherregulatory T cell
dc.subject.otherT cell
dc.subject.otherneutrophil
dc.subject.othergestational hypertension
dc.subject.otherhypertensive disorders of pregnancy (HDP)
dc.subject.otherimmune cell
dc.subject.othermacrophage
dc.subject.othermonocyte
dc.subject.othernatural killer cell
dc.subject.otherNK cell
dc.titleCellular immune responses in the pathophysiology of preeclampsia
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171226/1/jlb10901_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171226/2/jlb10901.pdf
dc.identifier.doi10.1002/JLB.5RU1120-787RR
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceSabatier F, Bretelle F, D’Ercole C, Boubli L, Sampol J, Dignat- George F. Neutrophil activation in preeclampsia and isolated intrauterine growth restriction. Am J Obstet Gynecol. 2000; 183: 1558 - 1563.
dc.identifier.citedreferenceHouser BL, Tilburgs T, Hill J, Nicotra ML, Strominger JL. Two unique human decidual macrophage populations. J Immunol. 2011; 186: 2633 - 2642.
dc.identifier.citedreferenceStaff AC, Johnsen GM, Dechend R, Redman CWG. Preeclampsia and uteroplacental acute atherosis: immune and inflammatory factors. J Reprod Immunol. 2014; 101- 102: 120 - 126.
dc.identifier.citedreferenceKim YM, Chaemsaithong P, Romero R, et al. The frequency of acute atherosis in normal pregnancy and preterm labor, preeclampsia, small- for- gestational age, fetal death and midtrimester spontaneous abortion. J Matern Fetal Neonatal Med. 2015; 28: 2001 - 2009.
dc.identifier.citedreferenceStaff AC, Fjeldstad HE, Fosheim IK, et al. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol. 2020.
dc.identifier.citedreferenceKhong TY. Immunohistologic study of the leukocytic infiltrate in maternal uterine tissues in normal and preeclamptic pregnancies at term. Am J Reprod Immunol Microbiol. 1987; 15: 1 - 8.
dc.identifier.citedreferenceLabarrere CA, Faulk WP. Intercellular adhesion molecule- 1 (ICAM- 1) and HLA- DR antigens are expressed on endovascular cytotrophoblasts in abnormal pregnancies. Am J Reprod Immunol. 1995; 33: 47 - 53.
dc.identifier.citedreferenceReister F, Frank HG, Heyl W, et al. The distribution of macrophages in spiral arteries of the placental bed in pre- eclampsia differs from that in healthy patients. Placenta. 1999; 20: 229 - 233.
dc.identifier.citedreferenceKim JS, Romero R, Cushenberry E, et al. Distribution of CD14+ and CD68+ macrophages in the placental bed and basal plate of women with preeclampsia and preterm labor. Placenta. 2007; 28: 571 - 576.
dc.identifier.citedreferenceSchonkeren D, van der Hoorn ML, Khedoe P, et al. Differential distribution and phenotype of decidual macrophages in preeclamptic versus control pregnancies. Am J Pathol. 2011; 178: 709 - 717.
dc.identifier.citedreferenceMyatt L, Eis AL, Brockman DE, Kossenjans W, Greer I, Lyall F. Inducible (type II) nitric oxide synthase in human placental villous tissue of normotensive, pre- eclamptic and intrauterine growth- restricted pregnancies. Placenta. 1997; 18: 261 - 268.
dc.identifier.citedreferenceHeyward CY, Sones JL, Lob HE, et al. The decidua of preeclamptic- like BPH/5 mice exhibits an exaggerated inflammatory response during early pregnancy. J Reprod Immunol. 2017; 120: 27 - 33.
dc.identifier.citedreferenceLi ZH, Wang LL, Liu H, et al. Galectin- 9 Alleviates LPS- Induced Preeclampsia- Like Impairment in Rats via Switching Decidual Macrophage Polarization to M2 Subtype. Front Immunol. 2018; 9: 3142.
dc.identifier.citedreferenceZhang YH, Aldo P, You Y, et al. Trophoblast- secreted soluble- PD- L1 modulates macrophage polarization and function. J Leukoc Biol. 2020.
dc.identifier.citedreferenceBoyle JJ, Harrington HA, Piper E, et al. Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol. 2009; 174: 1097 - 1108.
dc.identifier.citedreferenceKadl A, Meher AK, Sharma PR, et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res. 2010; 107: 737 - 746.
dc.identifier.citedreferenceColin S, Chinetti- Gbaguidi G, Staels B. Macrophage phenotypes in atherosclerosis. Immunol Rev. 2014; 262: 153 - 166.
dc.identifier.citedreferenceZhao H, Wong RJ, Kalish FS, Nayak NR, Stevenson DK. Effect of heme oxygenase- 1 deficiency on placental development. Placenta. 2009; 30: 861 - 868.
dc.identifier.citedreferenceSchumacher A, Wafula PO, Teles A, et al. Blockage of heme oxygenase- 1 abrogates the protective effect of regulatory T cells on murine pregnancy and promotes the maturation of dendritic cells. PLoS One. 2012; 7: e42301.
dc.identifier.citedreferenceReister F, Frank HG, Kingdom JC, et al. Macrophage- induced apoptosis limits endovascular trophoblast invasion in the uterine wall of preeclamptic women. Lab Invest. 2001; 81: 1143 - 1152.
dc.identifier.citedreferenceRenaud SJ, Postovit LM, Macdonald- Goodfellow SK, McDonald GT, Caldwell JD, Graham CH. Activated macrophages inhibit human cytotrophoblast invasiveness in vitro. Biol Reprod. 2005; 73: 237 - 243.
dc.identifier.citedreferenceRenaud SJ, Macdonald- Goodfellow SK, Graham CH. Coordinated regulation of human trophoblast invasiveness by macrophages and interleukin 10. Biol Reprod. 2007; 76: 448 - 454.
dc.identifier.citedreferencePetsas G, Jeschke U, Richter DU, et al. Aberrant expression of corticotropin- releasing hormone in pre- eclampsia induces expression of FasL in maternal macrophages and extravillous trophoblast apoptosis. Mol Hum Reprod. 2012; 18: 535 - 545.
dc.identifier.citedreferenceWetzka B, Nusing R, Charnock- Jones DS, Schafer W, Zahradnik HP, Smith SK. Cyclooxygenase- 1 and - 2 in human placenta and placental bed after normal and pre- eclamptic pregnancies. Hum Reprod. 1997; 12: 2313 - 2320.
dc.identifier.citedreferenceHaeger M, Bengtson A, Karlsson K, Heideman M. Complement activation and anaphylatoxin (C3a and C5a) formation in preeclampsia and by amniotic fluid. Obstet Gynecol. 1989; 73: 551 - 556.
dc.identifier.citedreferenceSingh J, Ahmed A, Girardi G. Role of complement component C1q in the onset of preeclampsia in mice. Hypertension. 2011; 58: 716 - 724.
dc.identifier.citedreferenceWang W, Irani RA, Zhang Y, et al. Autoantibody- mediated complement C3a receptor activation contributes to the pathogenesis of preeclampsia. Hypertension. 2012; 60: 712 - 721.
dc.identifier.citedreferenceMa Y, Kong LR, Ge Q, et al. Complement 5a- mediated trophoblasts dysfunction is involved in the development of pre- eclampsia. J Cell Mol Med. 2018; 22: 1034 - 1046.
dc.identifier.citedreferenceSzukiewicz D, Szukiewicz A, Maslinska D, Gujski M, Poppe P, Mazurek- Kantor J. Mast cell number, histamine concentration and placental vascular response to histamine in preeclampsia. Inflamm Res. 1999; 48: S39 - 40.
dc.identifier.citedreferenceSzewczyk G, Pyzlak M, Klimkiewicz J, Smiertka W, Miedzinska- Maciejewska M, Szukiewicz D. Mast cells and histamine: do they influence placental vascular network and development in preeclampsia?. Mediators Inflamm. 2012; 2012: 307189.
dc.identifier.citedreferenceMitani R, Maeda K, Fukui R, et al. Production of human mast cell chymase in human myometrium and placenta in cases of normal pregnancy and preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2002; 101: 155 - 160.
dc.identifier.citedreferenceNakano A, Kishi F, Minami K, Wakabayashi H, Nakaya Y, Kido H. Selective conversion of big endothelins to tracheal smooth muscle- constricting 31- amino acid- length endothelins by chymase from human mast cells. J Immunol. 1997; 159: 1987 - 1992.
dc.identifier.citedreferenceTsang JCH, Vong JSL, Ji L, et al. Integrative single- cell and cell- free plasma RNA transcriptomics elucidates placental cellular dynamics. Proc Natl Acad Sci U S A. 2017; 114: E7786 - E7795.
dc.identifier.citedreferenceTarca AL, Romero R, Erez O, et al. Maternal whole blood mRNA signatures identify women at risk of early preeclampsia: a longitudinal study. J Matern Fetal Neonatal Med. 2020: 1 - 12.
dc.identifier.citedreferenceLevine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004; 350: 672 - 683.
dc.identifier.citedreferenceBurton GJ, Redman CW, Roberts JM, Moffett A. Pre- eclampsia: pathophysiology and clinical implications. BMJ. 2019; 366: l2381.
dc.identifier.citedreferenceStaff AC. The two- stage placental model of preeclampsia: an update. J Reprod Immunol. 2019; 134- 135: 1 - 10.
dc.identifier.citedreferenceBrosens IA, Robertson WB, Dixon HG. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu. 1972; 1: 177 - 191.
dc.identifier.citedreferenceMaynard SE, Min JY, Merchan J, et al. Excess placental soluble fms- like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003; 111: 649 - 658.
dc.identifier.citedreferenceRedman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005; 308: 1592 - 1594.
dc.identifier.citedreferenceChaiworapongsa T, Chaemsaithong P, Yeo L, Romero R. Pre- eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014; 10: 466 - 480.
dc.identifier.citedreferencePoon LC, Shennan A, Hyett JA, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre- eclampsia: a pragmatic guide for first- trimester screening and prevention. Int J Gynaecol Obstet. 2019; 145: 1 - 33.Suppl.
dc.identifier.citedreferenceRomero R. Prenatal medicine: the child is the father of the man. J Matern Fetal Neonatal Med. 1996; 22: 636 - 639.
dc.identifier.citedreferenceBrosens I, Puttemans P, Benagiano G. Placental bed research: i. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes. Am J Obstet Gynecol. 2019; 221: 437 - 456.
dc.identifier.citedreferenceAmerican College of, O. and Gynecologists’ Committee on Practice, B.- O. Gestational Hypertension and Preeclampsia: aCOG Practice Bulletin, Number 222. Obstet Gynecol 2020; 135: e237 - e260.
dc.identifier.citedreferenceDouglas KA, Redman CW. Eclampsia in the United Kingdom. BMJ. 1994; 309: 1395 - 1400.
dc.identifier.citedreferenceMattar F, Sibai BMEclampsiaVIII. Risk factors for maternal morbidity. Am J Obstet Gynecol. 2000; 182: 307 - 312.
dc.identifier.citedreferenceMcDermott M, Miller EC, Rundek T, Hurn PD, Bushnell CD. Preeclampsia: association With Posterior Reversible Encephalopathy Syndrome and Stroke. Stroke. 2018; 49: 524 - 530.
dc.identifier.citedreferenceMiller EC. Preeclampsia and Cerebrovascular Disease. Hypertension. 2019; 74 ( 1 ): 5 - 13.
dc.identifier.citedreferenceVaught AJ, Kovell LC, Szymanski LM, et al. Acute Cardiac Effects of Severe Pre- Eclampsia. J Am Coll Cardiol. 2018; 72: 1 - 11.
dc.identifier.citedreferenceOrabona R, Sciatti E, Prefumo F, et al. Pre- eclampsia and heart failure: a close relationship. Ultrasound Obstet Gynecol. 2018; 52: 297 - 301.
dc.identifier.citedreferenceSibai BM. The HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets): much ado about nothing?. Am J Obstet Gynecol. 1990; 162: 311 - 316.
dc.identifier.citedreferenceLong PA, Abell DA, Beischer NA. Fetal growth retardation and pre- eclampsia. Br J Obstet Gynaecol. 1980; 87: 13 - 18.
dc.identifier.citedreferenceBasso O, Rasmussen S, Weinberg CR, Wilcox AJ, Irgens LM, Skjaerven R. Trends in fetal and infant survival following preeclampsia. JAMA. 2006; 296: 1357 - 1362.
dc.identifier.citedreferenceMongraw- Chaffin ML, Cirillo PM, Cohn BA. Preeclampsia and cardiovascular disease death: prospective evidence from the child health and development studies cohort. Hypertension. 2010; 56: 166 - 171.
dc.identifier.citedreferenceStaff AC, Redman CW, Williams D, et al. Global Pregnancy, C. Pregnancy and Long- Term Maternal Cardiovascular Health: progress Through Harmonization of Research Cohorts and Biobanks. Hypertension. 2016; 67: 251 - 260.
dc.identifier.citedreferenceLu HQ, Hu R. Lasting Effects of Intrauterine Exposure to Preeclampsia on Offspring and the Underlying Mechanism. AJP Rep. 2019; 9: e275 - e291.
dc.identifier.citedreferenceRedman CW. Current topic: pre- eclampsia and the placenta. Placenta. 1991; 12: 301 - 308.
dc.identifier.citedreferenceKnight M, Redman CW, Linton EA, Sargent IL. Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre- eclamptic pregnancies. Br J Obstet Gynaecol. 1998; 105: 632 - 640.
dc.identifier.citedreferenceGermain SJ, Sacks GP, Sooranna SR, Sargent IL, Redman CW. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J Immunol. 2007; 178: 5949 - 5956.
dc.identifier.citedreferenceChiarello DI, Abad C, Rojas D, et al. Oxidative stress: normal pregnancy versus preeclampsia. Biochim Biophys Acta Mol Basis Dis. 2020; 1866: 165354.
dc.identifier.citedreferenceBorzychowski AM, Sargent IL, Redman CW. Inflammation and pre- eclampsia. Semin Fetal Neonatal Med. 2006; 11: 309 - 316.
dc.identifier.citedreferenceThan NG, Romero R, Tarca AL, et al. Integrated Systems Biology Approach Identifies Novel Maternal and Placental Pathways of Preeclampsia. Front Immunol. 2018; 9: 1661.
dc.identifier.citedreferenceSargent IL, Borzychowski AM, Redman CW. NK cells and human pregnancy- an inflammatory view. Trends Immunol. 2006; 27: 399 - 404.
dc.identifier.citedreferenceTersigni C, Redman CW, Dragovic R, et al. HLA- DR is aberrantly expressed at feto- maternal interface in pre- eclampsia. J Reprod Immunol. 2018; 129: 48 - 52.
dc.identifier.citedreferenceFontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003; 4: 330 - 336.
dc.identifier.citedreferenceHori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003; 299: 1057 - 1061.
dc.identifier.citedreferenceCampbell C, Rudensky A. Roles of Regulatory T Cells in Tissue Pathophysiology and Metabolism. Cell Metab. 2020; 31: 18 - 25.
dc.identifier.citedreferenceAlvarez F, Al- Aubodah TA, Yang YH, Piccirillo CA. Mechanisms of TREG cell adaptation to inflammation. J Leukoc Biol. 2020; 108: 559 - 571.
dc.identifier.citedreferenceChaouat G, Petitbarat M, Dubanchet S, Rahmati M, Ledee N. Tolerance to the foetal allograft?. Am J Reprod Immunol. 2010; 63: 624 - 636.
dc.identifier.citedreferenceArck PC, Hecher K. Fetomaternal immune cross- talk and its consequences for maternal and offspring’s health. Nat Med. 2013; 19: 548 - 556.
dc.identifier.citedreferenceBonney EA. Alternative theories: pregnancy and immune tolerance. J Reprod Immunol. 2017; 123: 65 - 71.
dc.identifier.citedreferenceAluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004; 5: 266 - 271.
dc.identifier.citedreferenceSasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod. 2004; 10: 347 - 353.
dc.identifier.citedreferenceZenclussen AC, Gerlof K, Zenclussen ML, et al. Abnormal T- cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy- induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am J Pathol. 2005; 166: 811 - 822.
dc.identifier.citedreferenceKahn DA, Baltimore D. Pregnancy induces a fetal antigen- specific maternal T regulatory cell response that contributes to tolerance. Proc Natl Acad Sci U S A. 2010; 107: 9299 - 9304.
dc.identifier.citedreferenceShima T, Sasaki Y, Itoh M, et al. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J Reprod Immunol. 2010; 85: 121 - 129.
dc.identifier.citedreferenceGuerin LR, Moldenhauer LM, Prins JR, Bromfield JJ, Hayball JD, Robertson SA. Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19- mediated recruitment. Biol Reprod. 2011; 85: 397 - 408.
dc.identifier.citedreferenceSamstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal- fetal conflict. Cell. 2012; 150: 29 - 38.
dc.identifier.citedreferenceRowe JH, Ertelt JM, Xin L, Way SS. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature. 2012; 490: 102 - 106.
dc.identifier.citedreferenceRobertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahlström AC, Care AS. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol Reprod. 2009; 80: 1036 - 1045.
dc.identifier.citedreferenceRobertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy. J Clin Invest. 2018; 128: 4224 - 4235.
dc.identifier.citedreferenceJasper MJ, Tremellen KP, Robertson SA. Primary unexplained infertility is associated with reduced expression of the T- regulatory cell transcription factor Foxp3 in endometrial tissue. Mol Hum Reprod. 2006; 12: 301 - 308.
dc.identifier.citedreferenceTeles A, Schumacher A, Kuhnle MC, et al. Control of uterine microenvironment by foxp3(+) cells facilitates embryo implantation. Front Immunol. 2013; 4: 158.
dc.identifier.citedreferenceSasaki Y, Darmochwal- Kolarz D, Suzuki D, et al. Proportion of peripheral blood and decidual CD4(+) CD25(bright) regulatory T cells in pre- eclampsia. Clin Exp Immunol. 2007; 149: 139 - 145.
dc.identifier.citedreferenceQuinn KH, Lacoursiere DY, Cui L, Bui J, Parast MM. The unique pathophysiology of early- onset severe preeclampsia: role of decidual T regulatory cells. J Reprod Immunol. 2011; 91: 76 - 82.
dc.identifier.citedreferenceZhang Y, Liu Z, Tian M, et al. The altered PD- 1/PD- L1 pathway delivers the - one- two punch- effects to promote the Treg/Th17 imbalance in pre- eclampsia. Cell Mol Immunol. 2018; 15: 710 - 723.
dc.identifier.citedreferenceNguyen TA, Kahn DA, Loewendorf AI. Maternal- Fetal rejection reactions are unconstrained in preeclamptic women. PLoS One. 2017; 12: e0188250.
dc.identifier.citedreferenceGharesi- Fard B, Mobasher- Nejad F, Nasri F. The Expression of T- Helper Associated Transcription Factors and Cytokine Genes in Pre- Eclampsia. Iran J Immunol. 2016; 13: 296 - 308.
dc.identifier.citedreferenceChen J, Zhao L, Wang D, et al. Contribution of regulatory T cells to immune tolerance and association of microRNA- 210 and Foxp3 in preeclampsia. Mol Med Rep. 2019; 19: 1150 - 1158.
dc.identifier.citedreferenceJianjun Z, Yali H, Zhiqun W, Mingming Z, Xia Z. Imbalance of T- cell transcription factors contributes to the Th1 type immunity predominant in pre- eclampsia. Am J Reprod Immunol. 2010; 63: 38 - 45.
dc.identifier.citedreferenceHsu P, Santner- Nanan B, Dahlstrom JE, et al. Altered decidual DC- SIGN+ antigen- presenting cells and impaired regulatory T- cell induction in preeclampsia. Am J Pathol. 2012; 181: 2149 - 2160.
dc.identifier.citedreferenceWang J, Tao YM, Cheng XY, et al. Dendritic cells derived from preeclampsia patients influence Th1/Th17 cell differentiation in vitro. Int J Clin Exp Med. 2014; 7: 5303 - 5309.
dc.identifier.citedreferenceLi J, Huang L, Wang S, Zhang Z. The prevalence of regulatory T and dendritic cells is altered in peripheral blood of women with pre- eclampsia. Pregnancy Hypertens. 2019; 17: 233 - 240.
dc.identifier.citedreferenceNagayama S, Shirasuna K, Nagayama M, et al. Decreased circulating levels of plasmacytoid dendritic cells in women with early- onset preeclampsia. J Reprod Immunol. 2020; 141: 103170.
dc.identifier.citedreferenceJung YJ, Park Y, Kim HS, et al. Abnormal lymphatic vessel development is associated with decreased decidual regulatory T cells in severe preeclampsia. Am J Reprod Immunol. 2018; 80: e12970.
dc.identifier.citedreferenceTsuda S, Zhang X, Hamana H, et al, Clonally Expanded Decidual Effector Regulatory T Cells Increase in Late Gestation of Normal Pregnancy, but Not in Preeclampsia, in Humans. Front Immunol 2018; 9: 1934.
dc.identifier.citedreferenceDarmochwal- Kolarz D, Saito S, Rolinski J, et al. Activated T lymphocytes in pre- eclampsia. Am J Reprod Immunol. 2007; 58: 39 - 45.
dc.identifier.citedreferenceSteinborn A, Haensch GM, Mahnke K, et al. Distinct subsets of regulatory T cells during pregnancy: is the imbalance of these subsets involved in the pathogenesis of preeclampsia?. Clin Immunol. 2008; 129: 401 - 412.
dc.identifier.citedreferenceToldi G, Svec P, Vasarhelyi B, et al. Decreased number of FoxP3+ regulatory T cells in preeclampsia. Acta Obstet Gynecol Scand. 2008; 87: 1229 - 1233.
dc.identifier.citedreferencePrins JR, Boelens HM, Heimweg J, et al. Preeclampsia is associated with lower percentages of regulatory T cells in maternal blood. Hypertens Pregnancy. 2009; 28: 300 - 311.
dc.identifier.citedreferenceSantner- Nanan B, Peek MJ, Khanam R, et al. Systemic increase in the ratio between Foxp3+ and IL- 17- producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J Immunol. 2009; 183: 7023 - 7030.
dc.identifier.citedreferenceSteinborn A, Schmitt E, Kisielewicz A, et al. Pregnancy- associated diseases are characterized by the composition of the systemic regulatory T cell (Treg) pool with distinct subsets of Tregs. Clin Exp Immunol. 2012; 167: 84 - 98.
dc.identifier.citedreferenceDarmochwal- Kolarz D, Saito S, Tabarkiewicz J, et al. Apoptosis signaling is altered in CD4(+)CD25(+)FoxP3(+) T regulatory lymphocytes in pre- eclampsia. Int J Mol Sci. 2012; 13: 6548 - 6560.
dc.identifier.citedreferenceToldi G, Saito S, Shima T, et al. The frequency of peripheral blood CD4+ CD25high FoxP3+ and CD4+ CD25- FoxP3+ regulatory T cells in normal pregnancy and pre- eclampsia. Am J Reprod Immunol. 2012; 68: 175 - 180.
dc.identifier.citedreferenceDarmochwal- Kolarz D, Kludka- Sternik M, Tabarkiewicz J, et al. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. J Reprod Immunol. 2012; 93: 75 - 81.
dc.identifier.citedreferenceMoreno- Eutimio MA, Tovar- Rodriguez JM, Vargas- Avila K, et al. Increased serum levels of inflammatory mediators and low frequency of regulatory T cells in the peripheral blood of preeclamptic Mexican women. Biomed Res Int. 2014; 2014: 413249.
dc.identifier.citedreferenceTian M, Zhang Y, Liu Z, Sun G, Mor G, Liao A. The PD- 1/PD- L1 inhibitory pathway is altered in pre- eclampsia and regulates T cell responses in pre- eclamptic rats. Sci Rep. 2016; 6: 27683.
dc.identifier.citedreferenceZhang Z, Liu H, Shi Y, et al. Increased circulating Th22 cells correlated with Th17 cells in patients with severe preeclampsia. Hypertens Pregnancy. 2017; 36: 100 - 107.
dc.identifier.citedreferenceSalazar Garcia MD, Mobley Y, Henson J, et al. Early pregnancy immune biomarkers in peripheral blood may predict preeclampsia. J Reprod Immunol. 2018; 125: 25 - 31.
dc.identifier.citedreferenceZare M, Namavar Jahromi B, Gharesi- Fard B. Analysis of the frequencies and functions of CD4(+)CD25(+)CD127(low/neg), CD4(+)HLA- G(+), and CD8(+)HLA- G(+) regulatory T cells in pre- eclampsia. J Reprod Immunol. 2019; 133: 43 - 51.
dc.identifier.citedreferenceJabalie G, Ahmadi M, Koushaeian L, et al. Metabolic syndrome mediates proinflammatory responses of inflammatory cells in preeclampsia. Am J Reprod Immunol. 2019; 81: e13086.
dc.identifier.citedreferenceYu J, Qian L, Wu F, Li M, Chen W, Wang H. Decreased frequency of peripheral blood CD8(+)CD25(+)FoxP3(+)regulatory T cells correlates with IL- 33 levels in pre- eclampsia. Hypertens Pregnancy. 2017; 36: 217 - 225.
dc.identifier.citedreferencePaeschke S, Chen F, Horn N, et al. Pre- eclampsia is not associated with changes in the levels of regulatory T cells in peripheral blood. Am J Reprod Immunol. 2005; 54: 384 - 389.
dc.identifier.citedreferenceNagayama S, Ohkuchi A, Shirasuna K, et al. The Frequency of Peripheral Blood CD4(+)FoxP3(+) Regulatory T Cells in Women With Pre- eclampsia and Those With High- risk Factors for Pre- eclampsia. Hypertens Pregnancy. 2015; 34: 443 - 455.
dc.identifier.citedreferenceCao W, Wang X, Chen T, et al. The Expression of Notch/Notch Ligand, IL- 35, IL- 17, and Th17/Treg in Preeclampsia. Dis Markers. 2015; 2015: 316182.
dc.identifier.citedreferenceRibeiro VR, Romao- Veiga M, Romagnoli GG, et al. Association between cytokine profile and transcription factors produced by T- cell subsets in early- and late- onset pre- eclampsia. Immunology. 2017; 152: 163 - 173.
dc.identifier.citedreferenceBarnie PA, Lin X, Liu Y, Xu H, Su Z. IL- 17 producing innate lymphoid cells 3 (ILC3) but not Th17 cells might be the potential danger factor for preeclampsia and other pregnancy associated diseases. Int J Clin Exp Pathol. 2015; 8: 11100 - 11107.
dc.identifier.citedreferenceCornelius DC, Hogg JP, Scott J, et al. Administration of interleukin- 17 soluble receptor C suppresses TH17 cells, oxidative stress, and hypertension in response to placental ischemia during pregnancy. Hypertension. 2013; 62: 1068 - 1073.
dc.identifier.citedreferenceAhn SH, Nguyen SL, Petroff MG. Exploring the Origin and Antigenic Specificity of Maternal Regulatory T Cells in Pregnancy. Front Immunol. 2020; 11: 1302.
dc.identifier.citedreferenceHellberg S, Mehta RB, Forsberg A, et al. Maintained thymic output of conventional and regulatory T cells during human pregnancy. J Allergy Clin Immunol. 2019; 143: 771- 775 e777.
dc.identifier.citedreferencePaolino M, Koglgruber R, Cronin SJF, et al. RANK links thymic regulatory T cells to fetal loss and gestational diabetes in pregnancy. Nature. 2021; 589: 442 - 447.
dc.identifier.citedreferenceWagner MI, Mai C, Schmitt E, et al. The role of recent thymic emigrant- regulatory T- cell (RTE- Treg) differentiation during pregnancy. Immunol Cell Biol. 2015; 93: 858 - 867.
dc.identifier.citedreferenceWagner MI, Jost M, Spratte J, et al. Differentiation of ICOS+ and ICOS- recent thymic emigrant regulatory T cells (RTE T regs) during normal pregnancy, pre- eclampsia and HELLP syndrome. Clin Exp Immunol. 2016; 183: 129 - 142.
dc.identifier.citedreferenceBaecher- Allan C, Wolf E, Hafler DA. MHC class II expression identifies functionally distinct human regulatory T cells. J Immunol. 2006; 176: 4622 - 4631.
dc.identifier.citedreferenceAshley CW, Baecher- Allan C. Cutting Edge: responder T cells regulate human DR+ effector regulatory T cell activity via granzyme B. J Immunol. 2009; 183: 4843 - 4847.
dc.identifier.citedreferenceToldi G, Vasarhelyi ZE, Rigo J, et al. Prevalence of Regulatory T- Cell Subtypes in Preeclampsia. Am J Reprod Immunol. 2015; 74: 110 - 115.
dc.identifier.citedreferenceHan X, Ghaemi MS, Ando K, et al, Differential Dynamics of the Maternal Immune System in Healthy Pregnancy and Preeclampsia. Front Immunol 2019; 10: 1305.
dc.identifier.citedreferenceLiao W, Lin JX, Wang L, Li P, Leonard WJ. Modulation of cytokine receptors by IL- 2 broadly regulates differentiation into helper T cell lineages. Nat Immunol. 2011; 12: 551 - 559.
dc.identifier.citedreferenceCohen AC, Nadeau KC, Tu W, et al. Cutting edge: decreased accumulation and regulatory function of CD4+ CD25(high) T cells in human STAT5b deficiency. J Immunol. 2006; 177: 2770 - 2774.
dc.identifier.citedreferenceLaurence A, Tato CM, Davidson TS, et al. Interleukin- 2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007; 26: 371 - 381.
dc.identifier.citedreferenceAdler HS, Kubsch S, Graulich E, Ludwig S, Knop J, Steinbrink K. Activation of MAP kinase p38 is critical for the cell- cycle- controlled suppressor function of regulatory T cells. Blood. 2007; 109: 4351 - 4359.
dc.identifier.citedreferencePrzybyl L, Ibrahim T, Haase N, et al. Dechend, R. Regulatory T cells ameliorate intrauterine growth retardation in a transgenic rat model for preeclampsia. Hypertension. 2015; 65: 1298 - 1306.
dc.identifier.citedreferenceIbrahim T, Przybyl L, Harmon AC, et al. Proliferation of endogenous regulatory T cells improve the pathophysiology associated with placental ischaemia of pregnancy. Am J Reprod Immunol. 2017; 78.
dc.identifier.citedreferenceHarmon A, Cornelius D, Amaral L, et al. IL- 10 supplementation increases Tregs and decreases hypertension in the RUPP rat model of preeclampsia. Hypertens Pregnancy. 2015; 34: 291 - 306.
dc.identifier.citedreferenceCornelius DC, Amaral LM, Harmon A, Wallace K, Thomas AJ, Campbell N, Scott J, Herse F, Haase N, Moseley J, Wallukat G, Dechend R, LaMarca B. An increased population of regulatory T cells improves the pathophysiology of placental ischemia in a rat model of preeclampsia. Am J Physiol Regul Integr Comp Physiol. 2015; 309 ( 8 ): R884 - R891.
dc.identifier.citedreferenceGomez- Lopez N, Arenas- Hernandez M, Romero R, et al. Regulatory T Cells Play a Role in a Subset of Idiopathic Preterm Labor/Birth and Adverse Neonatal Outcomes. Cell Rep. 2020; 32: 107874.
dc.identifier.citedreferenceMoore MP, Carter NP, Redman CW. Lymphocyte subsets in normal and pre- eclamptic pregnancies. Br J Obstet Gynaecol. 1983; 90: 326 - 331.
dc.identifier.citedreferenceSaito S, Sakai M, Sasaki Y, Tanebe K, Tsuda H, Michimata T. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:th2 cell ratio during normal human pregnancy and preeclampsia. Clin Exp Immunol. 1999; 117: 550 - 555.
dc.identifier.citedreferenceChaiworapongsa T, Gervasi MT, Refuerzo J, et al. Maternal lymphocyte subpopulations (CD45RA+ and CD45RO+) in preeclampsia. Am J Obstet Gynecol. 2002; 187: 889 - 893.
dc.identifier.citedreferenceMolvarec A, Shiozaki A, Ito M, et al. Increased prevalence of peripheral blood granulysin- producing cytotoxic T lymphocytes in preeclampsia. J Reprod Immunol. 2011; 91: 56 - 63.
dc.identifier.citedreferencede Groot CJ, van der Mast BJ, Visser W, De Kuiper P, Weimar W, Van Besouw NM. Preeclampsia is associated with increased cytotoxic T- cell capacity to paternal antigens. Am J Obstet Gynecol. 2010; 203: 96 e491- 496.
dc.identifier.citedreferenceLok CA, Jebbink J, Nieuwland R, et al. Leukocyte activation and circulating leukocyte- derived microparticles in preeclampsia. Am J Reprod Immunol. 2009; 61: 346 - 359.
dc.identifier.citedreferencevon Dadelszen P, Wilkins T, Redman CW. Maternal peripheral blood leukocytes in normal and pre- eclamptic pregnancies. Br J Obstet Gynaecol. 1999; 106: 576 - 581.
dc.identifier.citedreferenceXu Y, Madsen- Bouterse SA, Romero R, et al. Leukocyte pyruvate kinase expression is reduced in normal human pregnancy but not in pre- eclampsia. Am J Reprod Immunol. 2010; 64: 137 - 151.
dc.identifier.citedreferenceWang J, Wen ZQ, Cheng XY, Mei TY, Chen ZF, Su LX. siRNAmediated knockdown of Tbet and RORgammat contributes to decreased inflammation in preeclampsia. Mol Med Rep. 2017; 16: 6368 - 6375.
dc.identifier.citedreferenceBajnok A, Ivanova M, Rigo J Jr, Toldi G. The Distribution of Activation Markers and Selectins on Peripheral T Lymphocytes in Preeclampsia. Mediators Inflamm. 2017; 2017: 8045161.
dc.identifier.citedreferenceSaito S, Umekage H, Sakamoto Y, et al. Increased T- helper- 1- type immunity and decreased T- helper- 2- type immunity in patients with preeclampsia. Am J Reprod Immunol. 1999; 41: 297 - 306.
dc.identifier.citedreferenceDarmochwal- Kolarz D, Kolarz B, Surdacka A, Rolinski J, Leszczynska- Gorzelak B, Oleszczuk J. The expression and concentration of CD40 ligand in normal pregnancy and pre- eclampsia. J Reprod Immunol. 2009; 79: 215 - 219.
dc.identifier.citedreferenceCornelius DC, Castillo J, Porter J, et al. Blockade of CD40 ligand for intercellular communication reduces hypertension, placental oxidative stress, and AT1- AA in response to adoptive transfer of CD4+ T lymphocytes from RUPP rats. Am J Physiol Regul Integr Comp Physiol. 2015; 309: R1243 - 1250.
dc.identifier.citedreferenceZenclussen AC, Fest S, Joachim R, Klapp BF, Arck PC. Introducing a mouse model for pre- eclampsia: adoptive transfer of activated Th1 cells leads to pre- eclampsia- like symptoms exclusively in pregnant mice. Eur J Immunol. 2004; 34: 377 - 387.
dc.identifier.citedreferenceSchmid M, Sollwedel A, Thuere C, et al. Murine pre- eclampsia induced by unspecific activation of the immune system correlates with alterations in the eNOS and AT1 receptor expression in the kidneys and placenta. Placenta. 2007; 28: 688 - 700.
dc.identifier.citedreferenceHayakawa S, Fujikawa T, Fukuoka H, et al. Sakurai, I. Murine fetal resorption and experimental pre- eclampsia are induced by both excessive Th1 and Th2 activation. J Reprod Immunol. 2000; 47: 121 - 138.
dc.identifier.citedreferenceBirkeland SA, Kristofferson K. Pre- eclampsia- a state of mother- fetus immune imbalance. Lancet. 1979; 2: 720 - 723.
dc.identifier.citedreferenceSiklos P, Nemeth- Csoka A, Bartalits L, et al. Decreased killer cell activity in preeclampsia. Gynecol Obstet Invest. 1987; 23: 84 - 88.
dc.identifier.citedreferenceKieffer TEC, Scherjon SA, Faas MM, Prins JR. Lower activation of CD4(+) memory T cells in preeclampsia compared to healthy pregnancies persists postpartum. J Reprod Immunol. 2019; 136: 102613.
dc.identifier.citedreferenceHsu P, Santner- Nanan B, Joung S, Peek MJ, Nanan R. Expansion of CD4(+) HLA- G(+) T Cell in human pregnancy is impaired in pre- eclampsia. Am J Reprod Immunol. 2014; 71: 217 - 228.
dc.identifier.citedreferenceJacobsen DP, Lekva T, Moe K, Fjeldstad HES, Johnsen GM, Sugulle M. Staff, A. C. Pregnancy and postpartum levels of circulating maternal sHLA- G in preeclampsia. J Reprod Immunol. 2021; 143: 103249.
dc.identifier.citedreferenceEllis SA, Sargent IL, Redman CW, McMichael AJ. Evidence for a novel HLA antigen found on human extravillous trophoblast and a choriocarcinoma cell line. Immunology. 1986; 59: 595 - 601.
dc.identifier.citedreferenceLombardelli L, Aguerre- Girr M, Logiodice F, et al. HLA- G5 induces IL- 4 secretion critical for successful pregnancy through differential expression of ILT2 receptor on decidual CD4(+) T cells and macrophages. J Immunol. 2013; 191: 3651 - 3662.
dc.identifier.citedreferenceDu MR, Guo PF, Piao HL, et al. Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal- fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. J Immunol. 2014; 192: 1502 - 1511.
dc.identifier.citedreferenceHuang YH, Zozulya AL, Weidenfeller C, Schwab N, Wiendl H. T cell suppression by naturally occurring HLA- G- expressing regulatory CD4+ T cells is IL- 10- dependent and reversible. J Leukoc Biol. 2009; 86: 273 - 281.
dc.identifier.citedreferenceAmodio G, Mugione A, Sanchez AM, et al. HLA- G expressing DC- 10 and CD4(+) T cells accumulate in human decidua during pregnancy. Hum Immunol. 2013; 74: 406 - 411.
dc.identifier.citedreferenceGaugas JM, Jones E, Curzen P. Spontaneous lymphocyte transformation in pregnancies complicated by pre- eclampsia. Am J Obstet Gynecol. 1975; 121: 542 - 544.
dc.identifier.citedreferenceSridama V, Yang SL, Moawad A, DeGroot LJ. T- cell subsets in patients with preeclampsia. Am J Obstet Gynecol. 1983; 147: 566 - 569.
dc.identifier.citedreferenceBorzychowski AM, Croy BA, Chan WL, Redman CW, Sargent IL. Changes in systemic type 1 and type 2 immunity in normal pregnancy and pre- eclampsia may be mediated by natural killer cells. Eur J Immunol. 2005; 35: 3054 - 3063.
dc.identifier.citedreferenceFaas MM, Schuiling GA, Linton EA, Sargent IL, Redman CW. Activation of peripheral leukocytes in rat pregnancy and experimental preeclampsia. Am J Obstet Gynecol. 2000; 182: 351 - 357.
dc.identifier.citedreferenceRieger L, Segerer S, Bernar T, et al. Specific subsets of immune cells in human decidua differ between normal pregnancy and preeclampsia- a prospective observational study. Reprod Biol Endocrinol. 2009; 7: 132.
dc.identifier.citedreferenceWilliams PJ, Bulmer JN, Searle RF, Innes BA, Robson SC. Altered decidual leucocyte populations in the placental bed in pre- eclampsia and foetal growth restriction: a comparison with late normal pregnancy. Reproduction. 2009; 138: 177 - 184.
dc.identifier.citedreferenceStallmach T, Hebisch G, Orban P, Lu X. Aberrant positioning of trophoblast and lymphocytes in the feto- maternal interface with pre- eclampsia. Virchows Arch. 1999; 434: 207 - 211.
dc.identifier.citedreferenceWilczynski JR, Tchorzewski H, Banasik M, et al. Lymphocyte subset distribution and cytokine secretion in third trimester decidua in normal pregnancy and preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2003; 109: 8 - 15.
dc.identifier.citedreferenceMilosevic- Stevanovic J, Krstic M, Stefanovic M, et al. T lymphocytes in the third trimester decidua in preeclampsia. Hypertens Pregnancy. 2019; 38: 52 - 57.
dc.identifier.citedreferenceLager S, Sovio U, Eddershaw E, et al. Abnormal placental CD8(+) T- cell infiltration is a feature of fetal growth restriction and pre- eclampsia. J Physiol. 2020.
dc.identifier.citedreferenceKieffer TEC, Laskewitz A, Vledder A, Scherjon SA, Faas MM, Prins JR. Decidual memory T- cell subsets and memory T- cell stimulatory cytokines in early- and late- onset preeclampsia. Am J Reprod Immunol. 2020: e13293.
dc.identifier.citedreferenceMorita K, Tsuda S, Kobayashi E, et al. Analysis of TCR Repertoire and PD- 1 Expression in Decidual and Peripheral CD8(+) T Cells Reveals Distinct Immune Mechanisms in Miscarriage and Preeclampsia. Front Immunol. 2020; 11: 1082.
dc.identifier.citedreferenceBarton BM, Xu R, Wherry EJ, Porrett PM. Pregnancy promotes tolerance to future offspring by programming selective dysfunction in long- lived maternal T cells. J Leukoc Biol. 2017; 101: 975 - 987.
dc.identifier.citedreferenceJohnsen GM, Storvold GL, Alnaes- Katjavivi PH, et al. Lymphocyte characterization of decidua basalis spiral arteries with acute atherosis in preeclamptic and normotensive pregnancies. J Reprod Immunol. 2019; 132: 42 - 48.
dc.identifier.citedreferenceChien YH, Meyer C, Bonneville M. gammadelta T cells: first line of defense and beyond. Annu Rev Immunol. 2014; 32: 121 - 155.
dc.identifier.citedreferenceKranz DM, Saito H, Disteche CM, et al. Chromosomal locations of the murine T- cell receptor alpha- chain gene and the T- cell gamma gene. Science. 1985; 227: 941 - 945.
dc.identifier.citedreferenceLew AM, Pardoll DM, Maloy WL, et al. Characterization of T cell receptor gamma chain expression in a subset of murine thymocytes. Science. 1986; 234: 1401 - 1405.
dc.identifier.citedreferenceMorath A, Schamel WW. alphabeta and gammadelta T cell receptors: similar but different. J Leukoc Biol. 2020; 107: 1045 - 1055.
dc.identifier.citedreferenceBeetz S, Wesch D, Marischen L, Welte S, Oberg HH, Kabelitz D. Innate immune functions of human gammadelta T cells. Immunobiology. 2008; 213: 173 - 182.
dc.identifier.citedreferenceMiko E, Szereday L, Barakonyi A, Jarkovich A, Varga P, Szekeres- Bartho J. Immunoactivation in preeclampsia: vdelta2+ and regulatory T cells during the inflammatory stage of disease. J Reprod Immunol. 2009; 80: 100 - 108.
dc.identifier.citedreferenceChatterjee P, Chiasson VL, Seerangan G, et al. Depletion of MHC class II invariant chain peptide or gamma- delta T- cells ameliorates experimental preeclampsia. Clin Sci (Lond). 2017; 131: 2047 - 2058.
dc.identifier.citedreferenceDuan B, Morel L. Role of B- 1a cells in autoimmunity. Autoimmun Rev. 2006; 5: 403 - 408.
dc.identifier.citedreferenceWallukat G, Homuth V, Fischer T, et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest. 1999; 103: 945 - 952.
dc.identifier.citedreferenceGusdon JP Jr, Heise ER, Herbst GA. Studies of lymphocyte populations in pre- eclampsia- eclampsia. Am J Obstet Gynecol. 1977; 129: 255 - 259.
dc.identifier.citedreferenceLiao AH, Liu LP, Ding WP, Zhang L. Functional changes of human peripheral B- lymphocytes in pre- eclampsia. Am J Reprod Immunol. 2009; 61: 313 - 321.
dc.identifier.citedreferenceJensen F, Wallukat G, Herse F, et al. Zenclussen, A. C. CD19+CD5+ cells as indicators of preeclampsia. Hypertension. 2012; 59: 861 - 868.
dc.identifier.citedreferenceZeng B, Kwak- Kim J, Liu Y, Liao AH. Treg cells are negatively correlated with increased memory B cells in pre- eclampsia while maintaining suppressive function on autologous B- cell proliferation. Am J Reprod Immunol. 2013; 70: 454 - 463.
dc.identifier.citedreferenceMuzzio DO, Soldati R, Rolle L, Zygmunt M, Zenclussen AC, Jensen F. B- 1a B cells regulate T cell differentiation associated with pregnancy disturbances. Front Immunol. 2014; 5: 6.
dc.identifier.citedreferenceLaMarca B, Wallace K, Herse F, et al. Hypertension in response to placental ischemia during pregnancy: role of B lymphocytes. Hypertension. 2011; 57: 865 - 871.
dc.identifier.citedreferenceZhang Q, Huang Y, Zhang K, et al. Cadmium- induced immune abnormality is a key pathogenic event in human and rat models of preeclampsia. Environ Pollut. 2016; 218: 770 - 782.
dc.identifier.citedreferenceZhang Q, Huang Y, Zhang K, et al. Progesterone attenuates hypertension and autoantibody levels to the angiotensin II type 1 receptor in response to elevated cadmium during pregnancy. Placenta. 2018; 62: 16 - 24.
dc.identifier.citedreferenceLaule CF, Odean EJ, Wing CR, et al. Role of B1 and B2 lymphocytes in placental ischemia- induced hypertension. Am J Physiol Heart Circ Physiol. 2019; 317: H732.
dc.identifier.citedreferenceDhillion P, Wallace K, Herse F, et al. - 17- mediated oxidative stress is an important stimulator of AT1- AA and hypertension during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2012; 303: R353 - 358.
dc.identifier.citedreferenceMadhur MS, Lob HE, McCann LA, et al. Interleukin 17 promotes angiotensin II- induced hypertension and vascular dysfunction. Hypertension. 2010; 55: 500 - 507.
dc.identifier.citedreferenceWang Y, Sugita N, Kikuchi A, et al. FcgammaRIIB- nt645+25A/G gene polymorphism and periodontitis in Japanese women with preeclampsia. Int J Immunogenet. 2012; 39: 492 - 500.
dc.identifier.citedreferenceVerbeek JS, Hirose S, Nishimura H. The Complex Association of FcgammaRIIb With Autoimmune Susceptibility. Front Immunol. 2019; 10: 2061.
dc.identifier.citedreferenceTeige I, Martensson L, Frendeus BL. Targeting the Antibody Checkpoints to Enhance Cancer Immunotherapy- Focus on FcgammaRIIB. Front Immunol. 2019; 10: 481.
dc.identifier.citedreferenceBulmer JN, Morrison L, Longfellow M, Ritson A, Pace D. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod. 1991; 6: 791 - 798.
dc.identifier.citedreferenceMoffett- King A. Natural killer cells and pregnancy. Nat Rev Immunol. 2002; 2: 656 - 663.
dc.identifier.citedreferenceMoffett A, Colucci F. Uterine NK cells: active regulators at the maternal- fetal interface. J Clin Invest. 2014; 124: 1872 - 1879.
dc.identifier.citedreferenceRätsep MT, Felker AM, Kay VR, Tolusso L, Hofmann AP, Croy BA. Uterine natural killer cells: supervisors of vasculature construction in early decidua basalis. Reproduction. 2015; 149: R91 - 102.
dc.identifier.citedreferenceBachmayer N, Rafik Hamad R, Liszka L, Bremme K, Sverremark- Ekström E. Aberrant uterine natural killer (NK)- cell expression and altered placental and serum levels of the NK- cell promoting cytokine interleukin- 12 in pre- eclampsia. Am J Reprod Immunol. 2006; 56: 292 - 301.
dc.identifier.citedreferenceZhang J, Dunk CE, Shynlova O, Caniggia I, Lye SJ. TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia. EBioMedicine. 2019; 39: 531 - 539.
dc.identifier.citedreferenceDu M, Wang W, Huang L, et al. Natural killer cells in the pathogenesis of preeclampsia: a double- edged sword. J Matern Fetal Neonatal Med. 2020: 1 - 8.
dc.identifier.citedreferenceLockwood CJ, Huang SJ, Chen CP, et al. Decidual cell regulation of natural killer cell- recruiting chemokines: implications for the pathogenesis and prediction of preeclampsia. Am J Pathol. 2013; 183: 841 - 856.
dc.identifier.citedreferenceMilosevic- Stevanovic J, Krstic M, Radovic- Janosevic D, Popovic J, Tasic M, Stojnev S. Number of decidual natural killer cells & macrophages in pre- eclampsia. Indian J Med Res. 2016; 144: 823 - 830.
dc.identifier.citedreferenceRabaglino MB, Post Uiterweer ED, Jeyabalan A, Hogge WA, Conrad KP. Bioinformatics approach reveals evidence for impaired endometrial maturation before and during early pregnancy in women who developed preeclampsia. Hypertension. 2015; 65: 421 - 429.
dc.identifier.citedreferenceDarmochwal- Kolarz D, Rolinski J, Leszczynska- Gorzelak B, Oleszczuk J. Fas antigen expression on the decidual lymphocytes of pre- eclamptic patients. Am J Reprod Immunol. 2000; 43: 197 - 201.
dc.identifier.citedreferenceHiby SE, Apps R, Sharkey AM, et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA- C2. J Clin Invest. 2010; 120: 4102 - 4110.
dc.identifier.citedreferenceJohnsen GM, Storvold GL, Drabbels JJM, et al. Staff, A. C. The combination of maternal KIR- B and fetal HLA- C2 is associated with decidua basalis acute atherosis in pregnancies with preeclampsia. J Reprod Immunol. 2018; 129: 23 - 29.
dc.identifier.citedreferenceHuhn O, Chazara O, Ivarsson MA, et al. High- Resolution Genetic and Phenotypic Analysis of KIR2DL1 Alleles and Their Association with Pre- Eclampsia. J Immunol. 2018; 201: 2593 - 2601.
dc.identifier.citedreferenceColonna M, Navarro F, Bellon T, et al. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med. 1997; 186: 1809 - 1818.
dc.identifier.citedreferenceWedenoja S, Yoshihara M, Teder H, et al. Fetal HLA- G mediated immune tolerance and interferon response in preeclampsia. EBioMedicine. 2020; 59: 102872.
dc.identifier.citedreferenceNishizawa A, Kumada K, Tateno K, et al. Analysis of HLA- G long- read genomic sequences in mother- offspring pairs with preeclampsia. Sci Rep. 2020; 10: 20027.
dc.identifier.citedreferenceIto M, Nishizawa H, Tsutsumi M, et al. Potential role for nectin- 4 in the pathogenesis of pre- eclampsia: a molecular genetic study. BMC Med Genet. 2018; 19: 166.
dc.identifier.citedreferenceTayade C, Hilchie D, He H, et al. Genetic deletion of placenta growth factor in mice alters uterine NK cells. J Immunol. 2007; 178: 4267 - 4275.
dc.identifier.citedreferenceLeplina O, Smetanenko E, Tikhonova M, et al. Binding of the placental growth factor to VEGF receptor type 1 modulates human T cell functions. J Leukoc Biol. 2020.
dc.identifier.citedreferenceLinzke N, Schumacher A, Woidacki K, Croy BA, Zenclussen AC. Carbon monoxide promotes proliferation of uterine natural killer cells and remodeling of spiral arteries in pregnant hypertensive heme oxygenase- 1 mutant mice. Hypertension. 2014; 63: 580 - 588.
dc.identifier.citedreferenceKasai M, Iwamori M, Nagai Y, Okumura K, Tada T. A glycolipid on the surface of mouse natural killer cells. Eur J Immunol. 1980; 10: 175 - 180.
dc.identifier.citedreferenceYoung WW Jr, Hakomori SI, Durdik JM, Henney CS. Identification of ganglio- N- tetraosylceramide as a new cell surface marker for murine natural killer (NK) cells. J Immunol. 1980; 124: 199 - 201.
dc.identifier.citedreferenceKasai M, Yoneda T, Habu S, Maruyama Y, Okumura K, Tokunaga T. In vivo effect of anti- asialo GM1 antibody on natural killer activity. Nature. 1981; 291: 334 - 335.
dc.identifier.citedreferenceCroy BA. Hasn’t the time come to replace the term metrial gland?. J Reprod Immunol. 1999; 42: 127 - 129.discussion 131- 124.
dc.identifier.citedreferenceGolic M, Haase N, Herse F, et al. Natural Killer Cell Reduction and Uteroplacental Vasculopathy. Hypertension. 2016; 68: 964 - 973.
dc.identifier.citedreferenceElfarra J, Amaral LM, McCalmon M, et al. Natural killer cells mediate pathophysiology in response to reduced uterine perfusion pressure. Clin Sci (Lond). 2017; 131: 2753 - 2762.
dc.identifier.citedreferenceVaka VR, McMaster KM, Cornelius DC, et al. Natural killer cells contribute to mitochondrial dysfunction in response to placental ischemia in reduced uterine perfusion pressure rats. Am J Physiol Regul Integr Comp Physiol. 2019; 316: R441 - R447.
dc.identifier.citedreferenceBohlender J, Ganten D, Luft FC. Rats transgenic for human renin and human angiotensinogen as a model for gestational hypertension. J Am Soc Nephrol. 2000; 11: 2056 - 2061.
dc.identifier.citedreferenceDechend R, Gratze P, Wallukat G, et al. Agonistic autoantibodies to the AT1 receptor in a transgenic rat model of preeclampsia. Hypertension. 2005; 45: 742 - 746.
dc.identifier.citedreferenceVerlohren S, Niehoff M, Hering L, et al. Uterine vascular function in a transgenic preeclampsia rat model. Hypertension. 2008; 51: 547 - 553.
dc.identifier.citedreferenceHering L, Herse F, Geusens N, et al. Effects of circulating and local uteroplacental angiotensin II in rat pregnancy. Hypertension. 2010; 56: 311 - 318.
dc.identifier.citedreferenceToder V, Blank M, Gleicher N, Voljovich I, Mashiah S, Nebel L. Activity of natural killer cells in normal pregnancy and edema- proteinuria- hypertension gestosis. Am J Obstet Gynecol. 1983; 145: 7 - 10.
dc.identifier.citedreferenceMinagawa M, Narita J, Tada T, et al. Mechanisms underlying immunologic states during pregnancy: possible association of the sympathetic nervous system. Cell Immunol. 1999; 196: 1 - 13.
dc.identifier.citedreferenceVinnars MT, Bjork E, Nagaev I, et al. Enhanced Th1 and inflammatory mRNA responses upregulate NK cell cytotoxicity and NKG2D ligand expression in human pre- eclamptic placenta and target it for NK cell attack. Am J Reprod Immunol. 2018; 80: e12969.
dc.identifier.citedreferenceAlanen A, Lassila O. Deficient natural killer cell function in preeclampsia. Obstet Gynecol. 1982; 60: 631 - 634.
dc.identifier.citedreferenceHill JA, Hsia S, Doran DM, Bryans CI. Natural killer cell activity and antibody dependent cell- mediated cytotoxicity in preeclampsia. J Reprod Immunol. 1986; 9: 205 - 212.
dc.identifier.citedreferenceLagana AS, Giordano D, Loddo S, et al. Decreased Endothelial Progenitor Cells (EPCs) and increased Natural Killer (NK) cells in peripheral blood as possible early markers of preeclampsia: a case- control analysis. Arch Gynecol Obstet. 2017; 295: 867 - 872.
dc.identifier.citedreferenceBrien ME, Boufaied I, Soglio DD, Rey E, Leduc L, Girard S. Distinct inflammatory profile in preeclampsia and postpartum preeclampsia reveal unique mechanisms. Biol Reprod. 2019; 100: 187 - 194.
dc.identifier.citedreferenceSeamon K, Kurlak LO, Warthan M, et al. The Differential Expression of ERAP1/ERAP2 and Immune Cell Activation in Pre- eclampsia. Front Immunol. 2020; 11: 396.
dc.identifier.citedreferenceDarmochwal- Kolarz D, Rolinski J, Leszczynska- Goarzelak B, Oleszczuk J. The expressions of intracellular cytokines in the lymphocytes of preeclamptic patients. Am J Reprod Immunol. 2002; 48: 381 - 386.
dc.identifier.citedreferencevan Nieuwenhoven AL, Moes H, Heineman MJ, Santema J, Faas MM. Cytokine production by monocytes, NK cells, and lymphocytes is different in preeclamptic patients as compared with normal pregnant women. Hypertens Pregnancy. 2008; 27: 207 - 224.
dc.identifier.citedreferenceBachmayer N, Sohlberg E, Sundstrom Y, et al. Women with pre- eclampsia have an altered NKG2A and NKG2C receptor expression on peripheral blood natural killer cells. Am J Reprod Immunol. 2009; 62: 147 - 157.
dc.identifier.citedreferenceBueno- Sanchez JC, Agudelo- Jaramillo B, Escobar- Aguilerae LF, et al. Cytokine production by non- stimulated peripheral blood NK cells and lymphocytes in early- onset severe pre- eclampsia without HELLP. J Reprod Immunol. 2013; 97: 223 - 231.
dc.identifier.citedreferenceMolvarec A, Ito M, Shima T, et al. Decreased proportion of peripheral blood vascular endothelial growth factor- expressing T and natural killer cells in preeclampsia. Am J Obstet Gynecol. 2010; 203: 567 e561- 568.
dc.identifier.citedreferenceMolvarec A, Blois SM, Stenczer B, et al. Peripheral blood galectin- 1- expressing T and natural killer cells in normal pregnancy and preeclampsia. Clin Immunol. 2011; 139: 48 - 56.
dc.identifier.citedreferenceO’Brien TJ, Hardin JW, Bannon GA, Norris JS, Quirk JG. CA 125 antigen in human amniotic fluid and fetal membranes. Am J Obstet Gynecol. 1986; 155: 50 - 55.
dc.identifier.citedreferenceQuirk JG Jr, Brunson GL, Long CA, Bannon GA, Sanders MM, O’Brien TJ. CA 125 in tissues and amniotic fluid during pregnancy. Am J Obstet Gynecol. 1988; 159: 644 - 649.
dc.identifier.citedreferenceTyler C, Kapur A, Felder M, et al. The mucin MUC16 (CA125) binds to NK cells and monocytes from peripheral blood of women with healthy pregnancy and preeclampsia. Am J Reprod Immunol. 2012; 68: 28 - 37.
dc.identifier.citedreferenceCottrell JN, Amaral LM, Harmon A, et al. Interleukin- 4 supplementation improves the pathophysiology of hypertension in response to placental ischemia in RUPP rats. Am J Physiol Regul Integr Comp Physiol. 2019; 316: R165 - R171.
dc.identifier.citedreferenceElfarra JT, Cottrell JN, Cornelius DC, et al. 17- Hydroxyprogesterone caproate improves T cells and NK cells in response to placental ischemia; new mechanisms of action for an old drug. Pregnancy Hypertens. 2020; 19: 226 - 232.
dc.identifier.citedreferenceShields CA, McCalmon M, Ibrahim T, et al. Placental ischemia- stimulated T- helper 17 cells induce preeclampsia- associated cytolytic natural killer cells during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2018; 315: R336 - R343.
dc.identifier.citedreferenceRatsep MT, Felker AM, Kay VR, Tolusso L, Hofmann AP, Croy BA. Uterine natural killer cells: supervisors of vasculature construction in early decidua basalis. Reproduction. 2015; 149: R91 - 102.
dc.identifier.citedreferenceAshkar AA, Di Santo JP, Croy BA. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med. 2000; 192: 259 - 270.
dc.identifier.citedreferenceAshkar AA, Croy BA. Functions of uterine natural killer cells are mediated by interferon gamma production during murine pregnancy. Semin Immunol. 2001; 13: 235 - 241.
dc.identifier.citedreferenceBurke SD, Barrette VF, Bianco J, et al. Spiral arterial remodeling is not essential for normal blood pressure regulation in pregnant mice. Hypertension. 2010; 55: 729 - 737.
dc.identifier.citedreferenceWallace AE, Whitley GS, Thilaganathan B, Cartwright JE. Decidual natural killer cell receptor expression is altered in pregnancies with impaired vascular remodeling and a higher risk of pre- eclampsia. J Leukoc Biol. 2015; 97: 79 - 86.
dc.identifier.citedreferenceMakino Y, Kanno R, Ito T, Higashino K, Taniguchi M. Predominant expression of invariant V alpha 14+ TCR alpha chain in NK1.1+ T cell populations. Int Immunol. 1995; 7: 1157 - 1161.
dc.identifier.citedreferenceSalio M, Silk JD, Jones EY, Cerundolo V. Biology of CD1- and MR1- restricted T cells. Annu Rev Immunol. 2014; 32: 323 - 366.
dc.identifier.citedreferenceBoyson JE, Nagarkatti N, Nizam L, Exley MA, Strominger JL. Gestation stage- dependent mechanisms of invariant natural killer T cell- mediated pregnancy loss. Proc Natl Acad Sci U S A. 2006; 103: 4580 - 4585.
dc.identifier.citedreferenceSt Louis D, Romero R, Plazyo O, et al. Invariant NKT Cell Activation Induces Late Preterm Birth That Is Attenuated by Rosiglitazone. J Immunol. 2016; 196: 1044 - 1059.
dc.identifier.citedreferenceGomez- Lopez N, Romero R, Arenas- Hernandez M, et al. In vivo activation of invariant natural killer T cells induces systemic and local alterations in T- cell subsets prior to preterm birth. Clin Exp Immunol. 2017; 189: 211 - 225.
dc.identifier.citedreferenceNegishi Y, Shima Y, Takeshita T, Takahashi H. Distribution of invariant natural killer T cells and dendritic cells in late pre- term birth without acute chorioamnionitis. Am J Reprod Immunol. 2017; 77.
dc.identifier.citedreferenceMiko E, Szereday L, Barakonyi A, Jarkovich A, Varga P, Szekeres- Bartho J. The role of invariant NKT cells in pre- eclampsia. Am J Reprod Immunol. 2008; 60: 118 - 126.
dc.identifier.citedreferenceSouthcombe J, Redman C, Sargent I. Peripheral blood invariant natural killer T cells throughout pregnancy and in preeclamptic women. J Reprod Immunol. 2010; 87: 52 - 59.
dc.identifier.citedreferenceWaisman A, Lukas D, Clausen BE, Yogev N. Dendritic cells as gatekeepers of tolerance. Semin Immunopathol. 2017; 39: 153 - 163.
dc.identifier.citedreferenceMoldenhauer LM, Diener KR, Thring DM, Brown MP, Hayball JD, Robertson SA. Cross- presentation of male seminal fluid antigens elicits T cell activation to initiate the female immune response to pregnancy. J Immunol. 2009; 182: 8080 - 8093.
dc.identifier.citedreferenceDarmochwal- Kolarz D, Rolinski J, Tabarkiewicz J, et al. Myeloid and lymphoid dendritic cells in normal pregnancy and pre- eclampsia. Clin Exp Immunol. 2003; 132: 339 - 344.
dc.identifier.citedreferenceWang J, Tao YM, Cheng XY, et al. Vascular endothelial growth factor affects dendritic cell activity in hypertensive disorders of pregnancy. Mol Med Rep. 2015; 12: 3781 - 3786.
dc.identifier.citedreferencePanda B, Panda A, Ueda I, et al. Dendritic cells in the circulation of women with preeclampsia demonstrate a pro- inflammatory bias secondary to dysregulation of TLR receptors. J Reprod Immunol. 2012; 94: 210 - 215.
dc.identifier.citedreferenceDarmochwal- Kolarz DA, Kludka- Sternik M, Chmielewski T, et al. The expressions of CD200 and CD200R molecules on myeloid and lymphoid dendritic cells in pre- eclampsia and normal pregnancy. Am J Reprod Immunol. 2012; 67: 474 - 481.
dc.identifier.citedreferenceDarmochwal- Kolarz D, Kludka- Sternik M, Kolarz B, et al. The expression of B7- H1 and B7- H4 co- stimulatory molecules on myeloid and plasmacytoid dendritic cells in pre- eclampsia and normal pregnancy. J Reprod Immunol. 2013; 99: 33 - 38.
dc.identifier.citedreferenceChatterjee P, Chiasson VL, Seerangan G, et al. Cotreatment with interleukin 4 and interleukin 10 modulates immune cells and prevents hypertension in pregnant mice. Am J Hypertens. 2015; 28: 135 - 142.
dc.identifier.citedreferenceGierman LM, Silva GB, Pervaiz Z, et al. Iversen, A. C. TLR3 expression by maternal and fetal cells at the maternal- fetal interface in normal and preeclamptic pregnancies. J Leukoc Biol. 2020.
dc.identifier.citedreferenceScroggins SM, Santillan DA, Lund JM, et al. Elevated vasopressin in pregnant mice induces T- helper subset alterations consistent with human preeclampsia. Clin Sci (Lond). 2018; 132: 419 - 436.
dc.identifier.citedreferenceHuang SJ, Chen CP, Schatz F, Rahman M, Abrahams VM, Lockwood CJ. Pre- eclampsia is associated with dendritic cell recruitment into the uterine decidua. J Pathol. 2008; 214: 328 - 336.
dc.identifier.citedreferenceLi M, Wu ZM, Yang H, Huang SJ. NFκB and JNK/MAPK activation mediates the production of major macrophage- or dendritic cell- recruiting chemokine in human first trimester decidual cells in response to proinflammatory stimuli. J Clin Endocrinol Metab. 2011; 96: 2502 - 2511.
dc.identifier.citedreferenceHuang SJ, Zenclussen AC, Chen CP, et al. The implication of aberrant GM- CSF expression in decidual cells in the pathogenesis of preeclampsia. Am J Pathol. 2010; 177: 2472 - 2482.
dc.identifier.citedreferenceDunk C, Kwan M, Hazan A, et al. Failure of Decidualization and Maternal Immune Tolerance Underlies Uterovascular Resistance in Intra Uterine Growth Restriction. Front Endocrinol (Lausanne). 2019; 10: 160.
dc.identifier.citedreferenceWang P, Xue Y, Han Y, et al. The STAT3- binding long noncoding RNA lnc- DC controls human dendritic cell differentiation. Science. 2014; 344: 310 - 313.
dc.identifier.citedreferenceZhang W, Zhou Y, Ding Y. Lnc- DC mediates the over- maturation of decidual dendritic cells and induces the increase in Th1 cells in preeclampsia. Am J Reprod Immunol. 2017; 77.
dc.identifier.citedreferenceZhang W, Yang M, Yu L, et al. Long non- coding RNA lnc- DC in dendritic cells regulates trophoblast invasion via p- STAT3- mediated TIMP/MMP expression. Am J Reprod Immunol. 2020; 83: e13239.
dc.identifier.citedreferenceGervasi MT, Chaiworapongsa T, Pacora P, et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in preeclampsia. Am J Obstet Gynecol. 2001; 185: 792 - 797.
dc.identifier.citedreferenceMassobrio M, Benedetto C, Bertini E, Tetta C, Camussi G. Immune complexes in preeclampsia and normal pregnancy. Am J Obstet Gynecol. 1985; 152: 578 - 583.
dc.identifier.citedreferenceGreer IA, Haddad NG, Dawes J, Johnstone FD, Calder AA. Neutrophil activation in pregnancy- induced hypertension. Br J Obstet Gynaecol. 1989; 96: 978 - 982.
dc.identifier.citedreferenceGreer IA, Dawes J, Johnston TA, Calder AA. Neutrophil activation is confined to the maternal circulation in pregnancy- induced hypertension. Obstet Gynecol. 1991; 78: 28 - 32.
dc.identifier.citedreferenceHaeger M, Unander M, Norder- Hansson B, Tylman M, Bengtsson A. Complement, neutrophil, and macrophage activation in women with severe preeclampsia and the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol. 1992; 79: 19 - 26.
dc.identifier.citedreferenceAnim- Nyame N, Gamble J, Sooranna SR, Johnson MR, Sullivan MH, Steer PJ. Evidence of impaired microvascular function in pre- eclampsia: a non- invasive study. Clin Sci (Lond). 2003; 104: 405 - 412.
dc.identifier.citedreferenceBarden A, Ritchie J, Walters B, et al. Study of plasma factors associated with neutrophil activation and lipid peroxidation in preeclampsia. Hypertension. 2001; 38: 803 - 808.
dc.identifier.citedreferenceCanzoneri BJ, Lewis DF, Groome L, Wang Y. Increased neutrophil numbers account for leukocytosis in women with preeclampsia. Am J Perinatol. 2009; 26: 729 - 732.
dc.identifier.citedreferenceOylumlu M, Ozler A, Yildiz A, et al. New inflammatory markers in pre- eclampsia: echocardiographic epicardial fat thickness and neutrophil to lymphocyte ratio. Clin Exp Hypertens. 2014; 36: 503 - 507.
dc.identifier.citedreferencevon Dadelszen P, Watson RW, Noorwali F, et al. Maternal neutrophil apoptosis in normal pregnancy, preeclampsia, and normotensive intrauterine growth restriction. Am J Obstet Gynecol. 1999; 181: 408 - 414.
dc.identifier.citedreferenceShah TJ, Walsh SW. Activation of NF- kappaB and expression of COX- 2 in association with neutrophil infiltration in systemic vascular tissue of women with preeclampsia. Am J Obstet Gynecol. 2007; 196.
dc.identifier.citedreferenceCadden KA, Walsh SW. Neutrophils, but not lymphocytes or monocytes, infiltrate maternal systemic vasculature in women with preeclampsia. Hypertens Pregnancy. 2008; 27: 396 - 405.
dc.identifier.citedreferenceSacks GP, Studena K, Sargent K, Redman CW. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol. 1998; 179: 80 - 86.
dc.identifier.citedreferenceSu H, Na N, Zhang X, Zhao Y. The biological function and significance of CD74 in immune diseases. Inflamm Res. 2017; 66: 209 - 216.
dc.identifier.citedreferenceVenkatesha S, Toporsian M, Lam C, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006; 12: 642 - 649.
dc.identifier.citedreferenceLuppi P, Tse H, Lain KY, Markovic N, Piganelli JD, DeLoia JA. Preeclampsia activates circulating immune cells with engagement of the NF- kappaB pathway. Am J Reprod Immunol. 2006; 56: 135 - 144.
dc.identifier.citedreferenceLv J, Zhang X, Wang C, Wang H, Wang T, Qian Z. Hydrogen peroxide promotes the activation of preeclampsia peripheral T cells. Innate Immun. 2018; 24: 203 - 209.
dc.identifier.citedreferenceWalsh SW, Nugent WH, Dulaimi Al, M Washington, S. L., Dacha P, Strauss JF. 3rd Proteases Activate Pregnancy Neutrophils by a Protease- Activated Receptor 1 Pathway: epigenetic Implications for Preeclampsia. Reprod Sci. 2020; 27: 2115 - 2127.
dc.identifier.citedreferenceNitsche JF, Jiang SW, Brost BC. Maternal neutrophil toll- like receptor mRNA expression is down- regulated in preeclampsia. Am J Reprod Immunol. 2011; 66: 242 - 248.
dc.identifier.citedreferenceXie F, von Dadelszen P, Nadeau J. CMV infection, TLR- 2 and - 4 expression, and cytokine profiles in early- onset preeclampsia with HELLP syndrome. Am J Reprod Immunol. 2014; 71: 379 - 386.
dc.identifier.citedreferenceWang Y, Adair CD, Weeks JW, Lewis DF, Alexander JS. Increased neutrophil- endothelial adhesion induced by placental factors is mediated by platelet- activating factor in preeclampsia. J Soc Gynecol Investig. 1999; 6: 136 - 141.
dc.identifier.citedreferenceAly AS, Khandelwal M, Zhao J, Mehmet AH, Sammel MD, Parry S. Neutrophils are stimulated by syncytiotrophoblast microvillous membranes to generate superoxide radicals in women with preeclampsia. Am J Obstet Gynecol. 2004; 190: 252 - 258.
dc.identifier.citedreferenceHu Y, Li H, Yan R, et al. Increased Neutrophil Activation and Plasma DNA Levels in Patients with Pre- Eclampsia. Thromb Haemost. 2018; 118: 2064 - 2073.
dc.identifier.citedreferenceWalsh SW, Nugent WH, Dulaimi Al, M Washington, S. L., Dacha P, Strauss JF. 3rd Proteases Activate Pregnancy Neutrophils by a Protease- Activated Receptor 1 Pathway: epigenetic Implications for Preeclampsia. Reprod Sci. 2020.
dc.identifier.citedreferenceZusterzeel PL, Wanten GJ, Peters WH, Merkus HM, Steegers EA. Neutrophil oxygen radical production in pre- eclampsia with HELLP syndrome. Eur J Obstet Gynecol Reprod Biol. 2001; 99: 213 - 218.
dc.identifier.citedreferenceLampe R, Szucs S, Ormos M, Adany R, Poka R. Effect of normal and preeclamptic plasma on superoxide- anion production of neutrophils from healthy non- pregnant women. J Reprod Immunol. 2008; 79: 63 - 69.
dc.identifier.citedreferenceKrysiak O, Bretschneider A, Zhong E, et al. Soluble vascular endothelial growth factor receptor- 1 (sFLT- 1) mediates downregulation of FLT- 1 and prevents activated neutrophils from women with preeclampsia from additional migration by VEGF. Circ Res. 2005; 97: 1253 - 1261.
dc.identifier.citedreferenceMarques FK, Campos FM, Filho OA, Carvalho AT, Dusse LM, Gomes KB. Circulating microparticles in severe preeclampsia. Clin Chim Acta. 2012; 414: 253 - 258.
dc.identifier.citedreferenceMikhailova VA, Ovchinnikova OM, Zainulina MS, Sokolov DI, Sel’kov SA. Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bull Exp Biol Med. 2014; 157: 751 - 756.
dc.identifier.citedreferenceLampe R, Kover A, Szucs S, et al. Phagocytic index of neutrophil granulocytes and monocytes in healthy and preeclamptic pregnancy. J Reprod Immunol. 2015; 107: 26 - 30.
dc.identifier.citedreferenceLampe R, Kover A, Szucs S, Pal L, Arnyas E, Poka R. The effect of healthy pregnant plasma and preeclamptic plasma on the phagocytosis index of neutrophil granulocytes and monocytes of nonpregnant women. Hypertens Pregnancy. 2017; 36: 59 - 63.
dc.identifier.citedreferenceMellembakken JR, Aukrust P, Olafsen MK, Ueland T, Hestdal K, Videm V. Activation of leukocytes during the uteroplacental passage in preeclampsia. Hypertension. 2002; 39: 155 - 160.
dc.identifier.citedreferenceWang Y, Gu Y, Philibert L, Lucas MJ. Neutrophil activation induced by placental factors in normal and pre- eclamptic pregnancies in vitro. Placenta. 2001; 22: 560 - 565.
dc.identifier.citedreferenceLeavey K, Grynspan D, Cox BJ. Both - canonical- and - immunological- preeclampsia subtypes demonstrate changes in placental immune cell composition. Placenta. 2019; 83: 53 - 56.
dc.identifier.citedreferenceGupta AK, Hasler P, Holzgreve W, Gebhardt S, Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL- 8 and their presence in preeclampsia. Hum Immunol. 2005; 66: 1146 - 1154.
dc.identifier.citedreferenceRegal JF, Lillegard KE, Bauer AJ, Elmquist BJ, Loeks- Johnson AC, Gilbert JS. Neutrophil Depletion Attenuates Placental Ischemia- Induced Hypertension in the Rat. PLoS One. 2015; 10: e0132063.
dc.identifier.citedreferenceVeglia F, Perego M, Gabrilovich D. Myeloid- derived suppressor cells coming of age. Nat Immunol. 2018; 19: 108 - 119.
dc.identifier.citedreferenceSanaei MJ, Salimzadeh L, Bagheri N. Crosstalk between myeloid- derived suppressor cells and the immune system in prostate cancer: mDSCs and immune system in Prostate cancer. J Leukoc Biol. 2020; 107: 43 - 56.
dc.identifier.citedreferenceKöstlin N, Kugel H, Spring B, et al. Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T- cell responses. Eur J Immunol. 2014; 44: 2582 - 2591.
dc.identifier.citedreferencePrzybyl L, Haase N, Golic M, et al. CD74- Downregulation of Placental Macrophage- Trophoblastic Interactions in Preeclampsia. Circ Res. 2016; 119: 55 - 68.
dc.identifier.citedreferenceKöstlin N, Hofstädter K, Ostermeir AL, et al. Granulocytic Myeloid- Derived Suppressor Cells Accumulate in Human Placenta and Polarize toward a Th2 Phenotype. J Immunol. 2016; 196: 1132 - 1145.
dc.identifier.citedreferenceKöstlin N, Ostermeir AL, Spring B, et al. HLA- G promotes myeloid- derived suppressor cell accumulation and suppressive activity during human pregnancy through engagement of the receptor ILT4. Eur J Immunol. 2017; 47: 374 - 384.
dc.identifier.citedreferenceWang Y, Liu Y, Shu C, et al. Inhibition of pregnancy- associated granulocytic myeloid- derived suppressor cell expansion and arginase- 1 production in preeclampsia. J Reprod Immunol. 2018; 127: 48 - 54.
dc.identifier.citedreferenceAl- ofi E, Coffelt SB, Anumba DO. Monocyte subpopulations from pre- eclamptic patients are abnormally skewed and exhibit exaggerated responses to Toll- like receptor ligands. PLoS One. 2012; 7: e42217.
dc.identifier.citedreferenceMelgert BN, Spaans F, Borghuis T, et al. Pregnancy and preeclampsia affect monocyte subsets in humans and rats. PLoS One. 2012; 7: e45229.
dc.identifier.citedreferenceSpaans F, Melgert BN, Borghuis T, et al. Extracellular adenosine triphosphate affects systemic and kidney immune cell populations in pregnant rats. Am J Reprod Immunol. 2014; 72: 305 - 316.
dc.identifier.citedreferenceMa Y, Ye Y, Zhang J, Ruan CC, Gao PJ. Immune imbalance is associated with the development of preeclampsia. Medicine (Baltimore). 2019; 98: e15080.
dc.identifier.citedreferenceNunes PR, Romao- Veiga M, Peracoli JC, et al. Downregulation of CD163 in monocytes and its soluble form in the plasma is associated with a pro- inflammatory profile in pregnant women with preeclampsia. Immunol Res. 2019; 67: 194 - 201.
dc.identifier.citedreferenceRomao M, Peracoli JC, Bannwart- Castro CF, et al. TLR- 4 expression and pro- inflammatory cytokine production by peripheral blood monocytes from preeclamptic women. Pregnancy Hypertens. 2012; 2: 276.
dc.identifier.citedreferenceBui TM, Wiesolek HL, Sumagin R. ICAM- 1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 2020.
dc.identifier.citedreferenceHaller H, Ziegler EM, Homuth V, et al. Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients. Hypertension. 1997; 29: 291 - 296.
dc.identifier.citedreferenceOgge G, Romero R, Chaiworapongsa T, et al. Leukocytes of pregnant women with small- for- gestational age neonates have a different phenotypic and metabolic activity from those of women with preeclampsia. J Matern Fetal Neonatal Med. 2010; 23: 476 - 487.
dc.identifier.citedreferenceToldi G, Vasarhelyi B, Biro E, Fugedi G. Molvarec, A. B7 costimulation and intracellular indoleamine- 2,3- dioxygenase expression in peripheral blood of healthy pregnant and pre- eclamptic women. Am J Reprod Immunol. 2013; 69: 264 - 271.
dc.identifier.citedreferenceMcCord N, Ayuk P, McMahon M, Boyd RC, Sargent I, Redman C. System y+ arginine transport and NO production in peripheral blood mononuclear cells in pregnancy and preeclampsia. Hypertension. 2006; 47: 109 - 115.
dc.identifier.citedreferenceBoutet M, Roland L, Thomas N, Bilodeau JF. Specific systemic antioxidant response to preeclampsia in late pregnancy: the study of intracellular glutathione peroxidases in maternal and fetal blood. Am J Obstet Gynecol. 2009; 200: 530 e531- 537.
dc.identifier.citedreferenceSeki H, Matuoka K, Inooku H, Takeda S. TNF- alpha from monocyte of patients with pre- eclampsia- induced apoptosis in human trophoblast cell line. J Obstet Gynaecol Res. 2007; 33: 408 - 416.
dc.identifier.citedreferenceRomao- Veiga M, Bannwart- Castro CF, Borges VTM, Golim MA, Peracoli JC, Peracoli MTS. Increased TLR4 pathway activation and cytokine imbalance led to lipopolysaccharide tolerance in monocytes from preeclamptic women. Pregnancy Hypertens. 2020; 21: 159 - 165.
dc.identifier.citedreferenceAl- Ofi EA, Anumba DO. Ligands of toll- like receptors 2/4 differentially alter markers of inflammation, adhesion and angiogenesis by monocytes from women with pre- eclampsia in co- culture with endothelial cells. J Reprod Immunol. 2017; 121: 26 - 33.
dc.identifier.citedreferenceRomao- Veiga M, Matias ML, Ribeiro VR, et al. Induction of systemic inflammation by hyaluronan and hsp70 in women with pre- eclampsia. Cytokine. 2018; 105: 23 - 31.
dc.identifier.citedreferenceXu H, Shi Q, Mo Y, Wu L, Gu J, Xu Y. Downregulation of alpha7 nicotinic acetylcholine receptors in peripheral blood monocytes is associated with enhanced inflammation in preeclampsia. BMC Pregnancy Childbirth. 2019; 19: 188.
dc.identifier.citedreferenceMatias ML, Gomes VJ, Romao- Veiga M, et al. Silibinin Downregulates the NF- kappaB Pathway and NLRP1/NLRP3 Inflammasomes in Monocytes from Pregnant Women with Preeclampsia. Molecules. 2019: 24.
dc.identifier.citedreferenceMatzinger P. An innate sense of danger. Semin Immunol. 1998; 10: 399 - 415.
dc.identifier.citedreferenceLotze MT, Deisseroth A, Rubartelli A. Damage associated molecular pattern molecules. Clin Immunol. 2007; 124: 1 - 4.
dc.identifier.citedreferenceGomez- Lopez N, Motomura K, Miller D, Garcia- Flores V, Galaz J, Romero R. Inflammasomes: their Role in Normal and Complicated Pregnancies. J Immunol. 2019; 203: 2757 - 2769.
dc.identifier.citedreferenceJoerger- Messerli MS, Hoesli IM, Rusterholz C, Lapaire O. Stimulation of monocytes by placental microparticles involves toll- like receptors and nuclear factor kappa- light- chain- enhancer of activated B cells. Front Immunol. 2014; 5: 173.
dc.identifier.citedreferenceHolthe MR, Lyberg T, Staff AC, Berge LN. Leukocyte- platelet interaction in pregnancies complicated with preeclampsia. Platelets. 2005; 16: 91 - 97.
dc.identifier.citedreferenceMajor HD, Campbell RA, Silver RM, Branch DW, Weyrich AS. Synthesis of sFlt- 1 by platelet- monocyte aggregates contributes to the pathogenesis of preeclampsia. Am J Obstet Gynecol. 2014; 210: 547 e541- 547.
dc.identifier.citedreferenceLuyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood. 2019; 133: 511 - 520.
dc.identifier.citedreferenceAl- ofi E, Coffelt SB, Anumba DOFibrinogen. an endogenous ligand of Toll- like receptor 4, activates monocytes in pre- eclamptic patients. J Reprod Immunol. 2014; 103: 23 - 28.
dc.identifier.citedreferenceXu Y, Romero R, Miller D, et al. An M1- like Macrophage Polarization in Decidual Tissue during Spontaneous Preterm Labor That Is Attenuated by Rosiglitazone Treatment. J Immunol. 2016; 196: 2476 - 2491.
dc.identifier.citedreferenceJiang X, Du MR, Li M, Wang H. Three macrophage subsets are identified in the uterus during early human pregnancy. Cell Mol Immunol. 2018; 15: 1027 - 1037.
dc.identifier.citedreferencePique- Regi R, Romero R, Tarca AL, et al. Single cell transcriptional signatures of the human placenta in term and preterm parturition. Elife. 2019; 8.
dc.identifier.citedreferenceZulu MZ, Martinez FO, Gordon S, Gray CM. The Elusive Role of Placental Macrophages: the Hofbauer Cell. J Innate Immun. 2019; 11: 447 - 456.
dc.identifier.citedreferenceKatabuchi H, Yih S, Ohba T, et al. Characterization of macrophages in the decidual atherotic spiral artery with special reference to the cytology of foam cells. Med Electron Microsc. 2003; 36: 253 - 262.
dc.identifier.citedreferenceGill N, Leng Y, Romero R, et al. The immunophenotype of decidual macrophages in acute atherosis. Am J Reprod Immunol. 2019; 81: e13098.
dc.identifier.citedreferenceDe Wolf F, Robertson WB. Brosens, I. The ultrastructure of acute atherosis in hypertensive pregnancy. Am J Obstet Gynecol. 1975; 123: 164 - 174.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.