Show simple item record

Significant Increase of Electron Thermal Conductivity in Dirac Semimetal Beryllonitrene by Doping Beyond Van Hove Singularity

dc.contributor.authorTong, Zhen
dc.contributor.authorPecchia, Alessandro
dc.contributor.authorYam, ChiYung
dc.contributor.authorBao, Hua
dc.contributor.authorDumitrică, Traian
dc.contributor.authorFrauenheim, Thomas
dc.date.accessioned2022-05-06T17:29:16Z
dc.date.available2023-05-06 13:29:13en
dc.date.available2022-05-06T17:29:16Z
dc.date.issued2022-04
dc.identifier.citationTong, Zhen; Pecchia, Alessandro; Yam, ChiYung; Bao, Hua; Dumitrică, Traian ; Frauenheim, Thomas (2022). "Significant Increase of Electron Thermal Conductivity in Dirac Semimetal Beryllonitrene by Doping Beyond Van Hove Singularity." Advanced Functional Materials 32(17): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/172331
dc.description.abstract2D beryllium polynitrides or beryllonitrene is a newly synthesized layered material displaying anisotropic Dirac cones and van Hove singularity (VHS) located only ≈0.5 eV above the Fermi level. Using the Boltzmann transport equation with many-body effects and first-principles calculations, it is uncovered that beryllonitrene has an in-plane anisotropic room-temperature phonon thermal conductivity (κph) of 78.6 and 98.8 W mK−1, and an electron thermal conductivity (κe) of 23.0 and 60.7 W mK−1, along the in-plane directions. κph is dominated by the large heat capacity flexural acoustic (ZA) modes, which are susceptible to three-phonon and four-phonon scatterings but rather immune to scattering onto electrons. Filling the Dirac cones till VHS and above gradually enhances the phonon–electron coupling and monotonically decreases κph by up to 55%. Instead, κe displays unusual nonmonotonic variations with the increase in the carrier density and follows the electron density of states at corresponding Fermi levels. The results shed light on the thermal and electrical transport properties in beryllonitrene and reveal a thermal conductivity modulation mechanism that includes a 60% increase of κe upon filling of the Dirac cones until VHS.Theoretical models that consider all possible carrier scattering mechanisms using density functional theory, find a significant impact of n-doping on the electron thermal transport after reaching the van Hove singularity point in beryllonitrene. This finding suggests a new way to tune the electron thermal conductivity of 2D materials, including graphene.
dc.publisherWiley Periodicals, Inc.
dc.publisherKluwer Academic/Plenum Publishers
dc.subject.otherdoping
dc.subject.other2D materials
dc.subject.otherberyllonitrene
dc.subject.otherdensity functional theory
dc.subject.otherthermal conductivity
dc.titleSignificant Increase of Electron Thermal Conductivity in Dirac Semimetal Beryllonitrene by Doping Beyond Van Hove Singularity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172331/1/adfm202111556-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172331/2/adfm202111556.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172331/3/adfm202111556_am.pdf
dc.identifier.doi10.1002/adfm.202111556
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceP. B. Allen, Phys. Rev. B 1978, 17, 3725.
dc.identifier.citedreferenceW. Li, N. Mingo, Phys. Rev. B 2015, 91, 144304.
dc.identifier.citedreferenceB. Liao, B. Qiu, J. Zhou, S. Huberman, K. Esfarjani, G. Chen, Phys. Rev. Lett. 2015, 114, 115901.
dc.identifier.citedreferenceS.-Y. Yue, R. Yang, B. Liao, Phys. Rev. B 2019, 100, 115408.
dc.identifier.citedreferenceThermal Conductivity: Theory, Properties, and Applications, Physics of Solids and Liquids (Ed: T. M. Tritt ), Kluwer Academic/Plenum Publishers, New York 2004.
dc.identifier.citedreferenceY.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, P. Kim, Phys. Rev. Lett. 2007, 99, 246803.
dc.identifier.citedreferenceC.-H. Park, N. Bonini, T. Sohier, G. Samsonidze, B. Kozinsky, M. Calandra, F. Mauri, N. Marzari, Nano Lett. 2014, 14, 1113.
dc.identifier.citedreferenceT. Sohier, D. Campi, N. Marzari, M. Gibertini, Phys. Rev. Mater. 2018, 2, 114010.
dc.identifier.citedreferenceC.-H. Park, F. Giustino, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 2007, 99, 086804.
dc.identifier.citedreferenceF. J. Pinski, P. B. Allen, W. H. Butler, Phys. Rev. B 1981, 23, 5080.
dc.identifier.citedreferenceG. W. Ludwig, R. L. Watters, Phys. Rev. 1956, 101, 1699.
dc.identifier.citedreferenceJ. Qiao, Nat. Commun. 2014, 5, 4475.
dc.identifier.citedreferenceW.-B. Zhang, Q. Qu, K. Lai, ACS Appl. Mater. Interfaces 2017, 9, 1702.
dc.identifier.citedreferenceV. K. Yadav, Phys. B: Condens. Matter 2019, 571, 291.
dc.identifier.citedreferenceS. H. Mir, V. K. Yadav, J. K. Singh, ACS Omega 2020, 5, 14203.
dc.identifier.citedreferenceW. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, R. S. Ruoff, Nano Lett. 2010, 10, 1645.
dc.identifier.citedreferenceA. J. Gabourie, S. V. Suryavanshi, A. B. Farimani, E. Pop, 2D Mater. 2020, 8, 011001.
dc.identifier.citedreferenceG. D. Mahan, Many-Particle Physics, Kluwer Academic/Plenum Publishers, New York, NY 2000.
dc.identifier.citedreferenceG. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
dc.identifier.citedreferenceJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
dc.identifier.citedreferenceT. Feng, X. Ruan, Phys. Rev. B 2016, 93, 045202.
dc.identifier.citedreferenceZ. Tong, X. Yang, T. Feng, H. Bao, X. Ruan, Phys. Rev. B 2020, 101, 125416.
dc.identifier.citedreferenceP. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, et al., J. Phys.: Condens. Matter 2009, 21, 395502.
dc.identifier.citedreferenceN. Troullier, J. L. Martins, Phys. Rev. B 1991, 43, 1993.
dc.identifier.citedreferenceJ. Noffsinger, F. Giustino, B. D. Malone, C.-H. Park, S. G. Louie, M. L. Cohen, Comput. Phys. Commun. 2010, 181, 2140.
dc.identifier.citedreferenceS. Poncé, E. Margine, C. Verdi, F. Giustino, Comput. Phys. Commun. 2016, 209, 116.
dc.identifier.citedreferenceZ. Tong, H. Bao, Int. J. Heat Mass Transfer 2018, 117, 972.
dc.identifier.citedreferenceS. Li, Z. Tong, X. Zhang, H. Bao, Phys. Rev. B 2020, 102, 174306.
dc.identifier.citedreferenceJ. I. Mustafa, M. Bernardi, J. B. Neaton, S. G. Louie, Phys. Rev. B 2016, 94, 155105.
dc.identifier.citedreferenceS. Li, Z. Tong, H. Bao, J. Appl. Phys. 2019, 126, 025111.
dc.identifier.citedreferenceK. S. Novoselov, Science 2004, 306, 666.
dc.identifier.citedreferenceK. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197.
dc.identifier.citedreferenceA. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
dc.identifier.citedreferenceA. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109.
dc.identifier.citedreferenceY. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, Nature 2005, 438, 201.
dc.identifier.citedreferenceY.-W. Son, M. L. Cohen, S. G. Louie, Nature 2006, 444, 347.
dc.identifier.citedreferenceC. W. J. Beenakker, Rev. Mod. Phys. 2008, 80, 1337.
dc.identifier.citedreferenceY. Wang, N. Xu, D. Li, J. Zhu, Adv. Funct. Mater. 2017, 27, 1604134.
dc.identifier.citedreferenceS. Link, S. Forti, A. Stöhr, K. Küster, M. Rösner, D. Hirschmeier, C. Chen, J. Avila, M. C. Asensio, A. A. Zakharov, T. O. Wehling, A. I. Lichtenstein, M. I. Katsnelson, U. Starke, Phys. Rev. B 2019, 100, 121407.
dc.identifier.citedreferenceP. Rosenzweig, H. Karakachian, D. Marchenko, K. Küster, U. Starke, Phys. Rev. Lett. 2020, 125, 176403.
dc.identifier.citedreferenceR. Prasher, Science 2010, 328, 185.
dc.identifier.citedreferenceX. Gu, Y. Wei, X. Yin, B. Li, R. Yang, Rev. Mod. Phys. 2018, 90, 041002.
dc.identifier.citedreferenceY. Huang, J. Zhou, G. Wang, Z. Sun, J. Am. Chem. Soc. 2019, 141, 8503.
dc.identifier.citedreferenceS. Shin, Q. Wang, J. Luo, R. Chen, Adv. Funct. Mater. 2020, 30, 1904815.
dc.identifier.citedreferenceY. Zhao, Y. Cai, L. Zhang, B. Li, G. Zhang, J. T. L. Thong, Adv. Funct. Mater. 2020, 30, 1903929.
dc.identifier.citedreferenceD. Shin, G. Wang, M. Han, Z. Lin, A. O’Hara, F. Chen, J. Lin, S. T. Pantelides, Phys. Rev. Mater. 2021, 5, 044002.
dc.identifier.citedreferenceZ. Tong, A. Pecchia, C. Yam, T. Dumitrică, T. Frauenheim, Adv. Sci. 2021, 8, 2101624.
dc.identifier.citedreferenceH. Xie, S. Hao, T. P. Bailey, S. Cai, Y. Zhang, T. J. Slade, G. J. Snyder, V. P. Dravid, C. Uher, C. Wolverton, M. G. Kanatzidis, J. Am. Chem. Soc. 2021, 143, 5978.
dc.identifier.citedreferenceL. Lindsay, W. Li, J. Carrete, N. Mingo, D. A. Broido, T. L. Reinecke, Phys. Rev. B 2014, 89, 155426.
dc.identifier.citedreferenceX. Gu, R. Yang, Appl. Phys. Lett. 2014, 105, 131903.
dc.identifier.citedreferenceX. Gu, R. Yang, J. Appl. Phys. 2015, 117, 025102.
dc.identifier.citedreferenceA. Cepellotti, Nat. Commun. 2015, 6, 6400.
dc.identifier.citedreferenceA. Jain, A. J. H. McGaughey, Sci. Rep. 2015, 5, 8501.
dc.identifier.citedreferenceG. Qin, Z. Qin, W.-Z. Fang, L.-C. Zhang, S.-Y. Yue, Q.-B. Yan, M. Hu, G. Su, Nanoscale 2016, 8, 11306.
dc.identifier.citedreferenceT. Feng, X. Ruan, Phys. Rev. B 2018, 97, 045202.
dc.identifier.citedreferenceZ. Gao, F. Tao, J. Ren, Nanoscale 2018, 10, 12997.
dc.identifier.citedreferenceZ. Tong, T. Dumitrică, T. Frauenheim, Nano Lett. 2021, 21, 4351.
dc.identifier.citedreferenceX. Yang, A. Jena, F. Meng, S. Wen, J. Ma, X. Li, W. Li, Mater. Today Phys. 2021, 18, 100315.
dc.identifier.citedreferenceM. Bykov, T. Fedotenko, S. Chariton, D. Laniel, K. Glazyrin, M. Hanfland, J. S. Smith, V. B. Prakapenka, M. F. Mahmood, A. F. Goncharov, A. V. Ponomareva, F. Tasnádi, A. I. Abrikosov, T. Bin Masood, I. Hotz, A. N. Rudenko, M. I. Katsnelson, N. Dubrovinskaia, L. Dubrovinsky, I. A. Abrikosov, Phys. Rev. Lett. 2021, 126, 175501.
dc.identifier.citedreferenceJ. Wang, S. Deng, Z. Liu, Z. Liu, Natl. Sci. Rev. 2015, 2, 22.
dc.identifier.citedreferenceA. Bafekry, C. Stampfl, M. Faraji, M. Yagmurcukardes, M. M. Fadlallah, H. R. Jappor, M. Ghergherehchi, S. A. H. Feghhi, Appl. Phys. Lett. 2021, 118, 203103.
dc.identifier.citedreferenceB. Mortazavi, F. Shojaei, X. Zhuang, Mater. Today Nano 2021, 15, 100125.
dc.identifier.citedreferenceW. Li, J. Carrete, N. A. Katcho, N. Mingo, Comput. Phys. Commun. 2014, 185, 1747.
dc.identifier.citedreferenceS. Poncé, E. R. Margine, F. Giustino, Phys. Rev. B 2018, 97, 121201.
dc.identifier.citedreferenceZ. Tong, S. Li, X. Ruan, H. Bao, Phys. Rev. B 2019, 100, 144306.
dc.identifier.citedreferenceD. K. Efetov, P. Kim, Phys. Rev. Lett. 2010, 105, 256805.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.