Show simple item record

The numerical evaluation of Slater integrals on graphics processing units

dc.contributor.authorDang, Duy-Khoi
dc.contributor.authorWilson, Leighton W.
dc.contributor.authorZimmerman, Paul M.
dc.date.accessioned2022-09-26T16:02:01Z
dc.date.available2023-10-26 12:01:58en
dc.date.available2022-09-26T16:02:01Z
dc.date.issued2022-09-30
dc.identifier.citationDang, Duy-Khoi ; Wilson, Leighton W.; Zimmerman, Paul M. (2022). "The numerical evaluation of Slater integrals on graphics processing units." Journal of Computational Chemistry 43(25): 1680-1689.
dc.identifier.issn0192-8651
dc.identifier.issn1096-987X
dc.identifier.urihttps://hdl.handle.net/2027.42/174777
dc.description.abstractThis article presents SlaterGPU, a graphics processing unit (GPU) accelerated library that uses OpenACC to numerically compute Slater- type orbital (STO) integrals. The electron repulsion integrals (ERI) are computed under the RI approximation using the Coulomb potential of the Slater basis function. To fully realize the performance capabilities of modern GPUs, the Slater integrals are evaluated in mixed- precision, resulting in speedups for the ERIs of over 80à . Parallelization on multiple GPUs allows for integral throughput of over 3 million integrals per second. This places STO integral throughput within reach of single- threaded, conventional Gaussian integration schemes. To test the quality of the integrals, the fluorine exchange reaction barrier in fluoromethane was computed using heat- bath configuration interaction (HBCI). In addition, the singlet- triplet gap of cyclobutadiene was examined using HBCI in a triple- ζ, polarized basis set. These benchmarks demonstrate the library’s ability to generate the full set of integrals necessary for configuration interaction with up to 6h functions in the auxiliary basis.SlaterGPU, a GPU accelerated library for numerically computing Slater- type orbital (STO) integrals, is presented in this study. The library achieves speedups over CPU for the electron repulsion integrals of over 80à . By utilizing mixed- precision arithmetic and multi- GPU parallelism, SlaterGPU achieves STO integral throughput of over 3 million integrals per second. SlaterGPU also generates the full complement of electron integrals needed for methods such as full configuration interaction.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherGPU
dc.subject.otherintegrals
dc.subject.otherSlater orbitals
dc.subject.otherconfiguration interaction
dc.titleThe numerical evaluation of Slater integrals on graphics processing units
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174777/1/jcc26968-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174777/2/jcc26968.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174777/3/jcc26968_am.pdf
dc.identifier.doi10.1002/jcc.26968
dc.identifier.sourceJournal of Computational Chemistry
dc.identifier.citedreferenceM. E. Mura, P. J. Knowles, J. Chem. Phys. 1996, 104, 9848.
dc.identifier.citedreferenceA. Förster, L. Visscher, J. Chem. Theory Comput. 2020, 16, 7381.
dc.identifier.citedreferenceA. Förster, L. Visscher, J. Chem. Theory Comput. 2021, 17, 5080.
dc.identifier.citedreferenceA. A. Holmes, N. M. Tubman, C. J. Umrigar, J. Chem. Theory Comput. 2016, 12, 3674.
dc.identifier.citedreferenceP. M. Zimmerman, J. Phys. Chem. A 2017, 121, 4712.
dc.identifier.citedreferenceP. M. Zimmerman, J. Chem. Phys. 2017, 146, 104102.
dc.identifier.citedreferenceW. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed., Cambridge University Press, USA 2007.
dc.identifier.citedreferenceP. M. Boerrigter, G. Te Velde, J. E. Baerends, Int. J. Quantum Chem. 1988, 33, 87.
dc.identifier.citedreferenceA. D. Becke, J. Chem. Phys. 1988, 88, 2547.
dc.identifier.citedreferenceC. W. Murray, N. C. Handy, G. J. Laming, Mol. Phys. 1993, 78, 997.
dc.identifier.citedreferenceO. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346.
dc.identifier.citedreferenceV. Lebedev, USSR Comput. Math. Math. Phys. 1976, 16, 10.
dc.identifier.citedreferenceImplementations of the gamma functions. http://www.netlib.org/cephes/.
dc.identifier.citedreferenceI. S. Ufimtsev, T. J. Martinez, J. Chem. Theory Comput. 2009, 5, 1004.
dc.identifier.citedreferenceN. Luehr, I. S. Ufimtsev, T. J. Martvnez, J. Chem. Theory Comput. 2011, 7, 949.
dc.identifier.citedreferenceP. Pokhilko, E. Epifanovsky, A. I. Krylov, J. Chem. Theory Comput. 2018, 14, 4088.
dc.identifier.citedreferenceS. Seritan, C. Bannwarth, B. S. Fales, E. G. Hohenstein, S. I. L. Kokkila- Schumacher, N. Luehr, J. W. Snyder, C. Song, A. V. Titov, I. S. Ufimtsev, T. J. Martínez, J. Chem. Phys. 2020, 152, 224110.
dc.identifier.citedreferenceE. Van Lenthe, E. J. Baerends, J. Comput. Chem. 2003, 24, 1142.
dc.identifier.citedreferenceJ. E. T. Smith, B. Mussard, A. A. Holmes, S. Sharma, J. Chem. Theory Comput. 2017, 13, 5468.
dc.identifier.citedreferenceA. D. Chien, A. A. Holmes, M. Otten, C. J. Umrigar, S. Sharma, P. M. Zimmerman, J. Phys. Chem. A 2018, 122, 2714.
dc.identifier.citedreferenceJ. Li, M. Otten, A. A. Holmes, S. Sharma, C. J. Umrigar, J. Chem. Phys. 2018, 149, 214110.
dc.identifier.citedreferenceK. R. Brorsen, J. Chem. Theory Comput. 2020, 16, 2379.
dc.identifier.citedreferenceQ. Sun, J. Comput. Chem. 2015, 36, 1664.
dc.identifier.citedreferenceP. M. Gill, B. G. Johnson, J. A. Pople, Chem. Phys. Lett. 1993, 209, 506.
dc.identifier.citedreferenceM. Khalilov, A. Timoveev, J. Phys.: Conf. Ser. 2021, 1740, 012056.
dc.identifier.citedreferenceP. M. Zimmerman, J. Chem. Phys. 2017, 146, 224104.
dc.identifier.citedreferenceB. O. Roos, Int. J. Quantum Chem. 1980, 18, 175.
dc.identifier.citedreferenceB. O. Roos, P. R. Taylor, P. E. Sigbahn, Chem. Phys. 1980, 48, 157.
dc.identifier.citedreferenceP. M. Zimmerman, A. E. Rask, J. Chem. Phys. 2019, 150, 244117.
dc.identifier.citedreferenceD.- K. Dang, P. M. Zimmerman, J. Chem. Phys. 2021, 154, 014105.
dc.identifier.citedreferenceJ. F. Stanton, R. J. Bartlett, J. Chem. Phys. 1993, 98, 7029.
dc.identifier.citedreferenceJ. Friedrich, M. Hanrath, M. Dolg, J. Chem. Phys. 2007, 126, 154110.
dc.identifier.citedreferenceF. A. Evangelista, E. Prochnow, J. Gauss, H. F. Schaefer, J. Chem. Phys. 2010, 132, 074107.
dc.identifier.citedreferenceF. A. Evangelista, J. Gauss, J. Chem. Phys. 2011, 134, 114102.
dc.identifier.citedreferenceSlaterGPU. https://github.com/ZimmermanGroup/SlaterGPU.
dc.identifier.citedreferenceB. I. Dunlap, J. W. D. Connolly, J. R. Sabin, J. Chem. Phys. 1979, 71, 3396.
dc.identifier.citedreferenceH.- J. Werner, F. R. Manby, P. J. Knowles, J. Chem. Phys. 2003, 118, 8149.
dc.identifier.citedreferenceR. A. Distasio Jr., R. P. Steele, Y. M. Rhee, Y. Shao, M. Head- Gordon, J. Comput. Chem. 2007, 28, 839.
dc.identifier.citedreferenceT. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic Structure Theory, John Wiley & Sons, Ltd, England 2000.
dc.identifier.citedreferenceJ. C. Slater, Phys. Rev. 1928, 31, 333.
dc.identifier.citedreferenceA. J. Cohen, N. C. Handy, J. Chem. Phys. 2002, 117, 1470v1478.
dc.identifier.citedreferenceT. Kato, Commun. Pure Appl. Math. 1957, 10, 151.
dc.identifier.citedreferenceP. Reinhardt, P. E. Hoggan, Int. J. Quantum Chem. 2009, 109, 3191.
dc.identifier.citedreferenceS. F. Boys, A. C. Egerton, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 1950, 200, 542.
dc.identifier.citedreferenceL. E. McMurchie, E. R. Davidson, J. Comput. Phys. 1978, 26, 218.
dc.identifier.citedreferenceS. Obara, A. Saika, J. Chem. Phys. 1986, 84, 3963.
dc.identifier.citedreferenceS. Obara, A. Saika, J. Chem. Phys. 1988, 89, 1540.
dc.identifier.citedreferenceM. Head- Gordon, J. A. Pople, J. Chem. Phys. 1988, 89, 5777.
dc.identifier.citedreferenceP. M. W. Gill, M. Head- Gordon, J. A. Pople, J. Phys. Chem. 1990, 94, 5564.
dc.identifier.citedreferenceB. Kanungo, P. M. Zimmerman, V. Gavini, Nat. Commun. 2019, 10, 4497.
dc.identifier.citedreferenceM. A. Watson, N. C. Handy, A. J. Cohen, T. Helgaker, J. Chem. Phys. 2004, 120, 7252.
dc.identifier.citedreferenceP. E. Hoggan, Int. J. Quantum Chem. 2004, 100, 214.
dc.identifier.citedreferenceP. W. Ayers, R. C. Morrison, R. G. Parr, Mol. Phys. 2005, 103, 2061.
dc.identifier.citedreferenceW. J. Hehre, R. F. Stewart, J. A. Pople, J. Chem. Phys. 1969, 51, 2657.
dc.identifier.citedreferenceW. J. Hehre, R. Ditchfield, R. F. Stewart, J. A. Pople, J. Chem. Phys. 1970, 52, 2769.
dc.identifier.citedreferenceJ. Fernández Rico, R. López, A. Aguado, I. Ema, G. Ramírez, Int. J. Quantum Chem. 2001, 81, 148.
dc.identifier.citedreferenceM. Caffarel, J. Chem. Phys. 2019, 151, 064101.
dc.identifier.citedreferenceM. Nightingale, C. Umrigar, Quantum Monte Carlo Methods in Physics and Chemistry, Kluwer Academic Publishers, Boston, MA 1999.
dc.identifier.citedreferenceS. Zhang, H. Krakauer, Phys. Rev. Lett. 2003, 90, 136401.
dc.identifier.citedreferenceP. M. Zimmerman, J. Toulouse, Z. Zhang, C. B. Musgrave, C. J. Umrigar, J. Chem. Phys. 2009, 131, 124103.
dc.identifier.citedreferenceB. M. Austin, D. Y. Zubarev, W. A. Lester, Chem. Rev. 2012, 112, 263.
dc.identifier.citedreferenceW. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, 2nd ed., Wiley - VCH, Weinheim, New York 2001.
dc.identifier.citedreferenceM. A. Watson, N. C. Handy, A. J. Cohen, J. Chem. Phys. 2003, 119, 6475.
dc.identifier.citedreferenceA. Förster, M. Franchini, E. van Lenthe, L. Visscher, J. Chem. Theory Comput. 2020, 16, 875.
dc.identifier.citedreferenceA. Förster, L. Visscher, J. Comput. Chem. 2020, 41, 1660.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.