Show simple item record

Optimization of active surveillance strategies for heterogeneous patients with prostate cancer

dc.contributor.authorZhang, Zheng
dc.contributor.authorDenton, Brian T.
dc.contributor.authorMorgan, Todd M.
dc.date.accessioned2022-12-05T16:38:37Z
dc.date.available2023-12-05 11:38:35en
dc.date.available2022-12-05T16:38:37Z
dc.date.issued2022-11
dc.identifier.citationZhang, Zheng; Denton, Brian T.; Morgan, Todd M. (2022). "Optimization of active surveillance strategies for heterogeneous patients with prostate cancer." Production and Operations Management 31(11): 4021-4037.
dc.identifier.issn1059-1478
dc.identifier.issn1937-5956
dc.identifier.urihttps://hdl.handle.net/2027.42/175175
dc.description.abstractProstate cancer (PCa) is common in American men with long latent periods, during which the disease is asymptomatic. Active surveillance is a monitoring strategy commonly used for patients diagnosed with low-risk PCa who may harbor latent high-risk PCa. The optimal monitoring strategy attempts to minimize the disutility of testing while ensuring that the patient is detected at the earliest time when the disease progresses. Unfortunately, guidelines for the active surveillance of PCa are often one-size-fits-all strategies that ignore the heterogeneity among multiple patient types. In contrast, personalized strategies based on partially observable Markov decision process (POMDP) models are challenging to implement in practice given the large number of possible strategies that can be used. This article presents a two-stage stochastic programming approach that selects a set of strategies for predefined cardinality based on patients’ disease risks. The first-stage decision variables include binary variables for the selection of periods at which to test patients in each strategy and the assignment of multiple patient types to strategies. The objective is to maximize a weighted reward function that considers the need for cancer detection, missed detection, and cost of monitoring patients. We discuss the structure and complexity of the model and reformulate a logic-based Bender’s decomposition formulation that can solve realistic instances to optimality. We present a case study for the active surveillance of PCa and show that our model results in strategies that vary in intensity according to patient disease risk. Finally, we show that our model can generate a small number of strategies that can significantly improve the existing “one-size-fits-all” guideline strategies used in practice.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otheractive surveillance
dc.subject.otherhealth policy
dc.subject.otheroptimization
dc.subject.otherstochastic programming
dc.titleOptimization of active surveillance strategies for heterogeneous patients with prostate cancer
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelIndustrial and Operations Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175175/1/poms13800-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175175/2/poms13800.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175175/3/poms13800_am.pdf
dc.identifier.doi10.1111/poms.13800
dc.identifier.sourceProduction and Operations Management
dc.identifier.citedreferenceMayo Clinic ( 2015 ). Cancer biopsies do not promote cancer spread, research finds. Science Daily. www.sciencedaily.com/releases/2015/01/150109093717.htm
dc.identifier.citedreferenceHelm, J. E., Lavieri, M. S., Van Oyen, M. P., Stein, J. D., & Musch, D. C. ( 2015 ). Dynamic forecasting and control algorithms of glaucoma progression for clinician decision support. Operations Research, 63 ( 5 ), 979 – 999.
dc.identifier.citedreferenceHooker, J. N., & Ottosson, G. ( 2003 ). Logic-based Benders decomposition. Mathematical Programming, 96 ( 1 ), 33 – 60.
dc.identifier.citedreferenceInoue, L. Y., Lin, D. W., Newcomb, L. F., Leonardson, A. S., Ankerst, D., Gulati, R., Carter, H. B., Trock, B. J., Carroll, P. R., Cooperberg, M. R., Cowan, J. E., Klotz, L. H., Mamedov, A., Penson, D. F., & Etzioni, R. ( 2018 ). Comparative analysis of biopsy upgrading in four prostate cancer active surveillance cohorts. Annals of Internal Medicine, 168 ( 1 ), 1 – 9.
dc.identifier.citedreferenceKamalzadeh, H., Ahuja, V., Hahsler, M., & Bowen, M. E. ( 2021 ). An analytics-driven approach for optimal individualized diabetes screening. Production and Operations Management, 30 ( 9 ), 3161 – 3191.
dc.identifier.citedreferenceKinsella, N., Stattin, P., Cahill, D., Brown, C., Bill-Axelson, A., Bratt, O., Carlsson, S., & Van Hemelrijck, M. ( 2018 ). Factors influencing men’s choice of and adherence to active surveillance for low-risk prostate cancer: A mixed-method systematic review. European Urology, 74 ( 3 ), 261 – 280.
dc.identifier.citedreferenceLawrentschuk, N., & Klotz, L. ( 2011 ). Active surveillance for low-risk prostate cancer: An update. Nature Reviews Urology, 8 ( 6 ), 312.
dc.identifier.citedreferenceLitwin, M. S., Melmed, G. Y., & Nakazon, T. ( 2001 ). Life after radical prostatectomy: A longitudinal study. The Journal of Urology, 166 ( 2 ), 587 – 592.
dc.identifier.citedreferenceMoyer, V. A. ( 2012 ). Screening for prostate cancer: US preventive services task force recommendation statement. Annals of Internal Medicine, 157 ( 2 ), 120 – 134.
dc.identifier.citedreferenceMühlberger, N., Boskovic, K., Krahn, M. D., Bremner, K. E., Oberaigner, W., Klocker, H., Horninger, W., Sroczynski, G., & Siebert, U. ( 2017 ). Benefits and harms of prostate cancer screening–predictions of the oncotyrol prostate cancer outcome and policy model. BMC Public Health, 17 ( 1 ), 596.
dc.identifier.citedreferenceNenova, Z., & Shang, J. ( 2022 ). Chronic disease progression prediction: Leveraging case-based reasoning and big data analytics. Production and Operations Management, 31 ( 1 ), 259 – 280.
dc.identifier.citedreferenceOtten, J. W. M., Witteveen, A., Vliegen, I., Siesling, S., Timmer, J. B., & IJzerman, M. J. ( 2017 ). Stratified breast cancer follow-up using a partially observable MDP. In R. Boucherie & N. van Dijk (Eds.), Markov Decision processes in practice (pp. 223 – 244 ). Springer.
dc.identifier.citedreferenceRahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. ( 2017 ). The Benders decomposition algorithm: A literature review. European Journal of Operational Research, 259 ( 3 ), 801 – 817.
dc.identifier.citedreferenceSandkç, B., Maillart, L. M., Schaefer, A. J., & Roberts, M. S. ( 2013 ). Alleviating the patient’s price of privacy through a partially observable waiting list. Management Science, 59 ( 8 ), 1836 – 1854.
dc.identifier.citedreferenceSteimle, L. N., & Denton, B. T. ( 2017 ). Screening and treatment of chronic diseases. Markov Decision Processes in Practice, 248, 1 – 33.
dc.identifier.citedreferenceTosoian, J. J., Carter, H. B., Lepor, A., & Loeb, S. ( 2016 ). Active surveillance for prostate cancer: Current evidence and contemporary state of practice. Nature Reviews Urology, 13 ( 4 ), 205 – 215.
dc.identifier.citedreferenceTunç, S., Alagoz, O., & Burnside, E. S. ( 2022 ). A new perspective on breast cancer diagnostic guidelines to reduce overdiagnosis. Production and Operations Management, 31, 2361 – 2378. https://doi.org/10.1111/poms.13691
dc.identifier.citedreferenceUnderwood, D. J., Zhang, J., Denton, B. T., Shah, N. D., & Inman, B. A. ( 2012 ). Simulation optimization of PSA-threshold based prostate cancer screening policies. Health Care Management Science, 15 ( 4 ), 293 – 309.
dc.identifier.citedreferenceUSCS, C. S. W. G. ( 2018 ). U.S. cancer statistics data visualizations tool, based on November 2017 submission data (1999–2015). U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. www.cdc.gov/cancer/dataviz
dc.identifier.citedreferencevan Ackooij, W., de Oliveira, W., & Song, Y. ( 2017 ). Adaptive partition-based level decomposition methods for solving two-stage stochastic programs with fixed recourse. Informs Journal on Computing, 30 ( 1 ), 57 – 70.
dc.identifier.citedreferenceVan den Bergh, R. ( 2007 ). Prospective validation of active surveillance in prostate cancer: The PRIAS study. European Urology, 52, 1560 – 1563.
dc.identifier.citedreferenceVozikis, A., Goulionis, J. E., & Benos, V. K. ( 2012 ). The partially observable Markov decision processes in healthcare: An application to patients with ischemic heart disease (IHD). Operational Research, 12 ( 1 ), 3 – 14.
dc.identifier.citedreferenceZhang, J., Denton, B. T., Balasubramanian, H., Shah, N. D., & Inman, B. A. ( 2012 ). Optimization of prostate biopsy referral decisions. Manufacturing & Service Operations Management, 14 ( 4 ), 529 – 547.
dc.identifier.citedreferenceAmato, C., & Oliehoek, F. ( 2015 ). Scalable planning and learning for multiagent POMDPs. Proceedings of the AAAI Conference on Artificial Intelligence, 29, 1995 – 2002.
dc.identifier.citedreferenceAnkerst, D. P., & Thompson, I. M. ( 2006 ). Sensitivity and specificity of prostate-specific antigen for prostate cancer detection with high rates of biopsy verification. Archivio Italiano di Urologia Andrologia, 78 ( 4 ), 125 – 129.
dc.identifier.citedreferenceArias, E., Heron, M., & Xu, J. ( 2016 ). United States Life Tables, 2012. National Vital Statistics Reports, 65 ( 8 ), 1 – 68. https://www.cdc.gov/nchs/data/nvsr/nvsr65/nvsr65_08.pdf
dc.identifier.citedreferenceAyer, T., Alagoz, O., & Stout, N. K. ( 2012 ). OR Forum-POMDP approach to personalize mammography screening decisions. Operations Research, 60 ( 5 ), 1019 – 1034. http://pubsonline.informs.org/doi/abs/10.1287/opre.1110.1019
dc.identifier.citedreferenceBarnett, C. L., Auffenberg, G. B., Cheng, Z., Yang, F., Wang, J., Wei, J. T., Miller, D. C., Montie, J. E., Mamawala, M., & Denton, B. T. ( 2018 ). Optimizing active surveillance strategies to balance the competing goals of early detection of grade progression and minimizing harm from biopsies. Cancer, 124 ( 4 ), 698 – 705.
dc.identifier.citedreferenceBenders, J. F. ( 1962 ). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4 ( 1 ), 238 – 252.
dc.identifier.citedreferenceBertsimas, D., Silberholz, J., & Trikalinos, T. ( 2018 ). Optimal healthcare decision making under multiple mathematical models: application in prostate cancer screening. Health Care Management Science, 21, 105 – 118. https://doi.org/10.1007/s10729-016-9381-3
dc.identifier.citedreferenceBill-Axelson, A., Holmberg, L., Garmo, H., Taari, K., Busch, C., Nordling, S., Häggman, M., Andersson, S.-O., Andrén, O., Steineck, G., Adami, H.-O., & Johansson, J.-E. ( 2018 ). Radical prostatectomy or watchful waiting in prostate cancer—29-year follow-up. New England Journal of Medicine, 379 ( 24 ), 2319 – 2329.
dc.identifier.citedreferenceBokhorst, L. P., Alberts, A. R., Rannikko, A., Valdagni, R., Pickles, T., Kakehi, Y., Bangma, C. H., Roobol, M. J., & PRIAS study group. ( 2015 ). Compliance rates with the prostate cancer research international active surveillance (PRIAS) protocol and disease reclassification in noncompliers. European Urology, 68 ( 5 ), 814 – 821.
dc.identifier.citedreferenceBrandeau, M. L., Owens, D. K., Sox, C. H., & Wachter, R. M. ( 1993 ). Screening women of childbearing age for human immunodeficiency virus: A model-based policy analysis. Management Science, 39 ( 1 ), 72 – 92.
dc.identifier.citedreferenceCarter, H. B., Kettermann, A., Warlick, C., Metter, E. J., Landis, P., Walsh, P. C., & Epstein, J. I. ( 2007 ). Expectant management of prostate cancer with curative intent: An update of the Johns Hopkins experience. The Journal of Urology, 178 ( 6 ), 2359 – 2365.
dc.identifier.citedreferenceChen, Q., Ayer, T., & Chhatwal, J. ( 2018 ). Optimal m-switch surveillance policies for liver cancer in a hepatitis c–infected population. Operations Research, 66 ( 3 ), 673 – 696.
dc.identifier.citedreferenceChen, R. C., Bryan Rumble, R., D Loblaw, A., Finelli, A., Ehdaie, B., Cooperberg, M. R., Morgan, S. C., Tyldesley, S., Haluschak, J. J., Tan, W., Justman, S., & Jain, S. ( 2016 ). Active surveillance for the management of localized prostate cancer (Cancer Care Ontario Guideline): American Society of Clinical Oncology clinical practice guideline endorsement. Journal of Clinical Oncology, 34 ( 18 ), 2182 – 2190.
dc.identifier.citedreferenceDall’Era, M. A., Konety, B. R., Cowan, J. E., Shinohara, K., Stauf, F., Cooperberg, M. R., Meng, M. V., Kane, C. J., Perez, N., Master, V. A., & Carroll, P. R. ( 2008 ). Active surveillance for the management of prostate cancer in a contemporary cohort. Cancer: Interdisciplinary International Journal of the American Cancer Society, 112 ( 12 ), 2664 – 2670.
dc.identifier.citedreferencede Carvalho, T. M., Heijnsdijk, E. A., & de Koning, H. J. ( 2017 ). When should active surveillance for prostate cancer stop if no progression is detected? The Prostate, 77 ( 9 ), 962 – 969.
dc.identifier.citedreferencede Vries, H., van de Klundert, J., & Wagelmans, A. ( 2021 ). Toward elimination of infectious diseases with mobile screening teams: Hat in the DRC. Production and Operations Management, 30 ( 10 ), 3408 – 3428.
dc.identifier.citedreferenceErenay, F. S., Alagoz, O., & Said, A. ( 2014 ). Optimizing colonoscopy screening for colorectal cancer prevention and surveillance. Manufacturing & Service Operations Management, 16 ( 3 ), 381 – 400.
dc.identifier.citedreferenceGhani, K. R., Grigor, K., Tulloch, D. N., Bollina, P. R., & McNeill, S. A. ( 2005 ). Trends in reporting Gleason score 1991 to 2001: Changes in the pathologist’s practice. European Urology, 47 ( 2 ), 196 – 201.
dc.identifier.citedreferenceGuenther, E., Klein, N., Zapf, S., Weil, S., Schlosser, C., Rubinsky, B., & Stehling, M. ( 2019 ). Prostate cancer treatment with irreversible electroporation (IRE): Safety, efficacy and clinical experience in 471 treatments. PloS One, 14 ( 4 ), e0215093.
dc.identifier.citedreferenceHamdy, F. C., Donovan, J. L., Lane, J. A., Mason, M., Metcalfe, C., Holding, P., Davis, M., Peters, T. J., Turner, E. L., Martin, R. M., Oxley, J., Robinson, M., Staffurth, J., Walsh, E., Bollina, P., Catto, J., Doble, A., Doherty, A., Gillatt, D., … ProtecT Study Group. ( 2016 ). 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. New England Journal of Medicine, 375 ( 15 ), 1415 – 1424.
dc.identifier.citedreferenceHauskrecht, M., & Fraser, H. ( 2000 ). Planning treatment of ischemic heart disease with partially observable Markov decision processes. Artificial Intelligence in Medicine, 18, 221 – 244.
dc.identifier.citedreferenceHeijnsdijk, E. A., Wever, E. M., Auvinen, A., Hugosson, J., Ciatto, S., Nelen, V., Kwiatkowski, M., Villers, A., Páez, A., Moss, S. M., Zappa, M., Tammela, T. L. J., Mäkinen, T., Carlsson, S., Korfage, I. J., Essink-Bot, M.-L., Otto, S. J., Draisma, G., Bangma, C. H., … de Koning, H. J. ( 2012 ). Quality-of-life effects of prostate-specific antigen screening. New England Journal of Medicine, 367 ( 7 ), 595 – 605.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.