Show simple item record

Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations

dc.contributor.authorLoechli, Morgan
dc.contributor.authorStephens, Britton B.
dc.contributor.authorCommane, Roisin
dc.contributor.authorChevallier, Frédéric
dc.contributor.authorMcKain, Kathryn
dc.contributor.authorKeeling, Ralph F.
dc.contributor.authorMorgan, Eric J.
dc.contributor.authorPatra, Prabir K.
dc.contributor.authorSargent, Maryann R.
dc.contributor.authorSweeney, Colm
dc.contributor.authorKeppel-Aleks, Gretchen
dc.date.accessioned2023-03-03T21:09:57Z
dc.date.available2024-03-03 16:09:55en
dc.date.available2023-03-03T21:09:57Z
dc.date.issued2023-02
dc.identifier.citationLoechli, Morgan; Stephens, Britton B.; Commane, Roisin; Chevallier, Frédéric ; McKain, Kathryn; Keeling, Ralph F.; Morgan, Eric J.; Patra, Prabir K.; Sargent, Maryann R.; Sweeney, Colm; Keppel-Aleks, Gretchen (2023). "Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations." Global Biogeochemical Cycles 37(2): n/a-n/a.
dc.identifier.issn0886-6236
dc.identifier.issn1944-9224
dc.identifier.urihttps://hdl.handle.net/2027.42/175917
dc.description.abstractUnderstanding terrestrial ecosystems and their response to anthropogenic climate change requires quantification of land-atmosphere carbon exchange. However, top-down and bottom-up estimates of large-scale land-atmosphere fluxes, including the northern extratropical growing season net flux (GSNF), show significant discrepancies. We developed a data-driven metric for the GSNF using atmospheric carbon dioxide concentration observations collected during the High-Performance Instrumented Airborne Platform for Environmental Research Pole-to-Pole Observations and Atmospheric Tomography Mission flight campaigns. This aircraft-derived metric is bias-corrected using three independent atmospheric inversion systems. We estimate the northern extratropical GSNF to be 5.7 ± 0.3 Pg C and use it to evaluate net biosphere productivity from the Coupled Model Intercomparison Project phase 5 and 6 (CMIP5 and CMIP6) models. While the model-to-model spread in the GSNF has decreased in the CMIP6 models relative to that of the CMIP5 models, there is still disagreement on the magnitude and timing of seasonal carbon uptake with most models underestimating the GSNF and overestimating the length of the growing season relative to the observations. We also use an emergent constraint approach to estimate annual northern extratropical gross primary productivity to be 56 ± 17 Pg C, heterotrophic respiration to be 25 ± 13 Pg C, and net primary productivity to be 28 ± 12 Pg C. The flux inferred from these aircraft observations provides an additional constraint on large-scale gross fluxes in prognostic Earth system models that may ultimately improve our ability to accurately predict carbon-climate feedbacks.Plain Language SummaryThe exchange of carbon between the land and atmosphere is an important part of the Earth’s climate, and this exchange might change due to human-caused climate change. However, estimates of land-atmosphere carbon fluxes made using different techniques do not agree with each other. We use atmospheric carbon dioxide observations collected during two flight campaigns to show that 5.7 Pg C is exchanged between the atmosphere and the land in the northern hemisphere during the summer growing season. This estimate is used to evaluate the performance of two generations of climate prediction models. The newer generation of models show less spread than the older generation, but there is still significant disagreement on the magnitude and timing of land-atmosphere carbon exchange among models. Most models underestimate the growing season net flux and overestimate the length of the growing season. We also use our observational estimate to reduce the spread on component fluxes of carbon exchange, namely uptake by photosynthesis and release by respiration.Key PointsAircraft observations of atmospheric carbon dioxide concentrations are used to infer the net flux of the northern extratropical growing season net fluxThe observations suggest a larger net flux and shorter growing season than those simulated in Earth system modelsAn emergent constraint approach is used to estimate productivity and respiration fluxes
dc.publisherWiley Periodicals, Inc.
dc.publisherUniversity of California
dc.subject.otherland-atmosphere carbon fluxes
dc.subject.otherCMIP6 evaluation
dc.subject.otherHIPPO observations
dc.subject.otherCMIP5 evaluation
dc.subject.otherATom observations
dc.titleEvaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175917/1/gbc21387.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175917/2/gbc21387_am.pdf
dc.identifier.doi10.1029/2022GB007520
dc.identifier.sourceGlobal Biogeochemical Cycles
dc.identifier.citedreferenceSabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., et al. ( 2004 ). The oceanic sink for anthropogenic CO 2. Science, 305 ( 5682 ), 367 – 371. https://doi.org/10.1126/science.1097403
dc.identifier.citedreferencePatra, P. K., Takigawa, M., Watanabe, S., Chandra, N., Ishijima, K., & Yamashita, Y. ( 2018 ). Improved chemical tracer simulation by MIROC4.0-based atmospheric chemistry-transport model (MIROC4-ACTM). Scientific Online Letters on the Atmosphere, 14 ( 0 ), 91 – 96. https://doi.org/10.2151/SOLA.2018-016
dc.identifier.citedreferencePeiro, H., Crowell, S., Schuh, A., Baker, D. F., O’Dell, C., Jacobson, A. R., et al. ( 2022 ). Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) version 9 and in situ data and comparison to OCO-2 version 7. Atmospheric Chemistry and Physics, 22 ( 2 ), 1097 – 1130. https://doi.org/10.5194/acp-22-1097-2022
dc.identifier.citedreferencePeters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., et al. ( 2007 ). An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences, 104 ( 48 ), 18925 – 18930. https://doi.org/10.1073/pnas.0708986104
dc.identifier.citedreferenceRanderson, J. T., Thompson, M. V., Conway, T. J., Fung, I. Y., & Field, C. B. ( 1997 ). The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochemical Cycles, 11 ( 4 ), 535 – 560. https://doi.org/10.1029/97GB02268
dc.identifier.citedreferenceSantoni, G. W., Daube, B. C., Kort, E. A., Jiménez, R., Park, S., Pittman, J. V., et al. ( 2014 ). Evaluation of the airborne quantum cascade laser spectrometer (QCLS) measurements of the carbon and greenhouse gas suite-CO 2, CH 4, N 2 O, and CO-during the CalNex and HIPPO campaigns. Atmospheric Measurement Techniques, 7 ( 6 ), 1509 – 1526. https://doi.org/10.5194/amt-7-1509-2014
dc.identifier.citedreferenceSchimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., et al. ( 2001 ). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414 ( 6860 ), 169 – 172. https://doi.org/10.1038/35102500
dc.identifier.citedreferenceSchuh, A. E., Jacobson, A. R., Basu, S., Weir, B., Baker, D., Bowman, K., et al. ( 2019 ). Quantifying the impact of atmospheric transport uncertainty on CO 2 surface flux estimates. Global Biogeochemical Cycles, 33 ( 4 ), 484 – 500. https://doi.org/10.1029/2018GB006086
dc.identifier.citedreferenceSeland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., et al. ( 2019 ). NCC NorESM2-LM model output prepared for CMIP6 CMIP historical, version 20190917  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.8036
dc.identifier.citedreferenceSimpson, I. R., McKinnon, K. A., Davenport, F. v., Tingley, M., Lehner, F., al Fahad, A., & Chen, D. ( 2021 ). Emergent constraints on the large scale atmospheric circulation and regional hydroclimate: Do they still work in CMIP6 and how much can they actually constrain the future? Journal of Climate, 34 ( 15 ), 6355 – 6377. https://doi.org/10.1175/JCLI-D-21-0055.1
dc.identifier.citedreferenceStephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Bruhwiler, L., et al. ( 2007 ). Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO 2. Science, 316 ( 5832 ), 1732 – 1735. https://doi.org/10.1126/science.1137004
dc.identifier.citedreferenceStephens, B. B., Morgan, E. J., Bent, J. D., Keeling, R. F., Watt, A. S., Shertz, S. R., & Daube, B. C. ( 2021 ). Airborne measurements of oxygen concentration from the surface to the lower stratosphere and pole to pole. Atmospheric Measurement Techniques, 14 ( 3 ), 2543 – 2574. https://doi.org/10.5194/AMT-14-2543-2021
dc.identifier.citedreferenceSwart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., et al. ( 2019 ). CCCma CanESM5 model output prepared for CMIP6 CMIP historical, version 20190501  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.3610
dc.identifier.citedreferenceSweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., et al. ( 2015 ). Seasonal climatology of CO 2 across North America from aircraft measurements in the NOAA/ESRL global greenhouse gas reference network. Journal of Geophysical Research: Atmospheres, 120 ( 10 ), 5155 – 5190. https://doi.org/10.1002/2014JD022591
dc.identifier.citedreferenceTans, P. P., Fung, I. Y., & Takahashi, T. ( 1990 ). Observational constraints on the global atmospheric CO 2 budget. Science, 247 ( 4949 ), 1431 – 1438. https://doi.org/10.1126/science.247.4949.1431
dc.identifier.citedreferenceThompson, C. R., Wofsy, S. C., Prather, M. J., Newman, P. A., Hanisco, T. F., Ryerson, T. B., et al. ( 2022 ). The NASA atmospheric tomography (ATom) mission: Imaging the chemistry of the global atmosphere. Bulletin of the American Meteorological Society, 103 ( 3 ), E761 – E790. https://doi.org/10.1175/BAMS-D-20-0315.1
dc.identifier.citedreferenceThompson, R. L., Patra, P. K., Chevallier, F., Maksyutov, S., Law, R. M., Ziehn, T., et al. ( 2016 ). Top–down assessment of the Asian carbon budget since the mid 1990s. Nature Communications, 7 ( 1 ), 10724. https://doi.org/10.1038/ncomms10724
dc.identifier.citedreferenceThoning, K. W., Crotwell, A. M., & Mund, J. W. ( 2022 ). Atmospheric carbon dioxide dry air mole fractions from continuous measurements at Mauna Loa, Hawaii, Barrow, Alaska, American Samoa and south Pole. 1973–2021, version 2022–05 National Oceanic and Atmospheric Administration (NOAA). Global Monitoring Laboratory (GML). https://doi.org/10.15138/yaf1-bk21
dc.identifier.citedreferenceTjiputra, J. F., Roelandt, C., Bentsen, M., Lawrence, D. M., Lorentzen, T., Schwinger, J., et al. ( 2013 ). Evaluation of the carbon cycle components in the Norwegian Earth system model (NorESM). Geoscientific Model Development, 6 ( 2 ), 301 – 325. https://doi.org/10.5194/gmd-6-301-2013
dc.identifier.citedreferenceValentini, R., Matteucci, G., Dolman, A. J., Schulze, E. D., Rebmann, C., Moors, E. J., et al. ( 2000 ). Respiration as the main determinant of carbon balance in European forests. Nature, 404 ( 6780 ), 861 – 865. https://doi.org/10.1038/35009084
dc.identifier.citedreferenceVerma, S., Marshall, J., Gerbig, C., Rödenbeck, C., & Uwe Totsche, K. ( 2017 ). The constraint of CO 2 measurements made onboard passenger aircraft on surface-atmosphere fluxes: The impact of transport model errors in vertical mixing. Atmospheric Chemistry and Physics, 17 ( 9 ), 5665 – 5675. https://doi.org/10.5194/acp-17-5665-2017
dc.identifier.citedreferenceVolodin, E. M., Dianskii, N. A., & Gusev, A. V. ( 2010 ). Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya: Atmospheric and Oceanic Physics, 46 ( 4 ), 414 – 431. https://doi.org/10.1134/S000143381004002X
dc.identifier.citedreferenceWatanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., et al. ( 2011 ). MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4 ( 4 ), 845 – 872. https://doi.org/10.5194/gmd-4-845-2011
dc.identifier.citedreferenceWelp, L. R., Keeling, R. F., Meijer, H. A. J., Bollenbacher, A. F., Piper, S. C., Yoshimura, K., et al. ( 2011 ). Interannual variability in the oxygen isotopes of atmospheric CO 2 driven by El Niño. Nature, 477 ( 7366 ), 579 – 582. https://doi.org/10.1038/nature10421
dc.identifier.citedreferenceWieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., et al. ( 2019 ). MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP historical, version 20190929  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6595
dc.identifier.citedreferenceWilliamson, D. B., & Sansom, P. G. ( 2019 ). How are emergent constraints quantifying uncertainty and what do they leave behind? Bulletin of the American Meteorological Society, 100 ( 12 ), 2571 – 2588. https://doi.org/10.1175/BAMS-D-19-0131.1
dc.identifier.citedreferenceWilliamson, M. S., Thackeray, C. W., Cox, P. M., Hall, A., Huntingford, C., & Nijsse, F. J. M. M. ( 2021 ). Emergent constraints on climate sensitivities. Reviews of Modern Physics, 93 ( 2 ), 025004. https://doi.org/10.1103/RevModPhys.93.025004
dc.identifier.citedreferenceWofsy, S. C. ( 2011 ). HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 369 ( 1943 ), 2073 – 2086. https://doi.org/10.1098/rsta.2010.0313
dc.identifier.citedreferenceWofsy, S. C., Afshar, S., Allen, H. M., Apel, E. C., Asher, E. C., Barletta, B., et al.( 2021 ). ATom: Merged atmospheric chemistry, trace gases, and aerosols, version 2 [Dataset]. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1925
dc.identifier.citedreferenceWofsy, S. C., Daube, B. C., Jimenez, R., Kort, E., Pittman, J. V., Park, S., et al. ( 2017 ). HIPPO merged 10-second meteorology, atmospheric chemistry, and aerosol data. Version 1.0 [Dataset]. UCAR/NCAR: Earth Observing Laboratory. https://doi.org/10.3334/CDIAC/HIPPO_010
dc.identifier.citedreferenceYang, Z., Washenfelder, R. A., Keppel-Aleks, G., Krakauer, N. Y., Randerson, J. T., Tans, P. P., et al. ( 2007 ). New constraints on Northern Hemisphere growing season net flux. Geophysical Research Letters, 34 ( 12 ), L12807. https://doi.org/10.1029/2007GL029742
dc.identifier.citedreferenceZiehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., et al. ( 2019 ). CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP historical, version 20191115  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.4272
dc.identifier.citedreferenceAkima, H. ( 1978 ). A method of Bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Transactions on Mathematical Software, 4 ( 2 ), 148 – 159. Copyright 1978, Association for Computing Machinery, Inc., reprinted by permission. https://doi.org/10.1145/355780.355786
dc.identifier.citedreferenceArora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., et al. ( 2020 ). Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 17 ( 16 ), 4173 – 4222. https://doi.org/10.5194/bg-17-4173-2020
dc.identifier.citedreferenceArora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., et al. ( 2011 ). Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophysical Research Letters, 38 ( 5 ), 3 – 8. https://doi.org/10.1029/2010GL046270
dc.identifier.citedreferenceBaldocchi, D., Chu, H., & Reichstein, M. ( 2018 ). Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agricultural and Forest Meteorology, 249, 520 – 533. https://doi.org/10.1016/j.agrformet.2017.05.015
dc.identifier.citedreferenceBallantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P., & White, J. W. C. ( 2012 ). Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488 ( 7409 ), 70 – 72. https://doi.org/10.1038/nature11299
dc.identifier.citedreferenceBallantyne, A. P., Andres, R., Houghton, R., Stocker, B. D., Wanninkhof, R., Anderegg, W., et al. ( 2015 ). Audit of the global carbon budget: Estimate errors and their impact on uptake uncertainty. Biogeosciences, 12 ( 8 ), 2565 – 2584. https://doi.org/10.5194/bg-12-2565-2015
dc.identifier.citedreferenceBeer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., et al. ( 2010 ). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329 ( 5993 ), 834 – 838. https://doi.org/10.1126/science.1184984
dc.identifier.citedreferenceBellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., et al. ( 2011 ). The HadGEM2 family of met office unified model climate configurations. Geoscientific Model Development, 4 ( 3 ), 723 – 757. https://doi.org/10.5194/gmd-4-723-2011
dc.identifier.citedreferenceBent, J. ( 2014 ). Airborne oxygen measurements over the Southern Ocean as an integrated constraint of seasonal biogeochemical processes, PhD thesis. University of California.
dc.identifier.citedreferenceBentsen, M., Oliviè, D. J. L., Seland, Ø., Toniazzo, T., Gjermundsen, A., Graff, L. S., et al. ( 2019 ). NCC NorESM2-MM model output prepared for CMIP6 CMIP historical, version 20191126  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.8040
dc.identifier.citedreferenceBethke, I., Wang, Y., Counillon, F., Kimmritz, M., Fransner, F., Samuelsen, A., et al. ( 2019 ). NCC NorCPM1 model output prepared for CMIP6 CMIP historical, version 20190921  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.10894
dc.identifier.citedreferenceBoucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M. A., et al. ( 2018 ). IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical, version 20180711  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.5195
dc.identifier.citedreferenceCadule, P., Friedlingstein, P., Bopp, L., Sitch, S., Jones, C. D., Ciais, P., et al. ( 2010 ). Benchmarking coupled climate-carbon models against long-term atmospheric CO 2 measurements. Global Biogeochemical Cycles, 24 ( 2 ), GB2016. https://doi.org/10.1029/2009GB003556
dc.identifier.citedreferenceCanadell, J. G., Monteiro, P. M. S., Costa, M. H., Da Cunha, L. C., Cox, P. M., Alexey, V., et al. ( 2021 ). Global carbon and other biogeochemical cycles and feedbacks. In L. G. Masson-Delmotte (Ed.), Climate change 2021: The physical science basis. Contribution of WG I to the sixth assessment report of the IPCC. Cambridge University Press.
dc.identifier.citedreferenceChandra, N., Patra, P. K., Niwa, Y., Ito, A., Iida, Y., Goto, D., et al. ( 2022 ). Estimated regional CO 2 flux and uncertainty based on an ensemble of atmospheric CO 2 inversions. Atmospheric Chemistry and Physics, 22 ( 14 ), 9215 – 9243. https://doi.org/10.5194/acp-22-9215-2022
dc.identifier.citedreferenceChevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Bréon, F. M., et al. ( 2005 ). Inferring CO 2 sources and sinks from satellite observations: Method and application to TOVS data. Journal of Geophysical Research, 110 ( 24 ), 1 – 13. https://doi.org/10.1029/2005JD006390
dc.identifier.citedreferenceCiais, P., Rayner, P., Chevallier, F., Bousquet, P., Logan, M., Peylin, P., & Ramonet, M. ( 2010 ). Atmospheric inversions for estimating CO 2 fluxes: Methods and perspectives. Climatic Change, 103 ( 1–2 ), 69 – 92. https://doi.org/10.1007/s10584-010-9909-3
dc.identifier.citedreferenceCleveland, R. B., & Cleveland, W. S. ( 1990 ). STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6, 3 – 33.
dc.identifier.citedreferenceCollier, N., Hoffman, F. M., Lawrence, D. M., Keppel-Aleks, G., Koven, C. D., Riley, W. J., et al. ( 2018 ). The international land model benchmarking (ILAMB) system: Design, theory, and implementation. Journal of Advances in Modeling Earth Systems, 10 ( 11 ), 2731 – 2754. https://doi.org/10.1029/2018MS001354
dc.identifier.citedreferenceCooperative Global Atmospheric Data Integration Project. ( 2019 ). Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957–2018; obspack_co2_1_GLOBALVIEWplus_v5.0_2019_08_12 [Dataset]. NOAA Earth System R. https://doi.org/10.25925/20190812
dc.identifier.citedreferenceDanabasoglu, G. ( 2019a ). NCAR CESM2 model output prepared for CMIP6 CMIP historical, version 20190116  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.7627
dc.identifier.citedreferenceDanabasoglu, G. ( 2019b ). NCAR CESM2-FV2 model output prepared for CMIP6 CMIP historical, version 20190731  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.11297
dc.identifier.citedreferenceDanabasoglu, G. ( 2019c ). NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical, version 20190131  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.10071
dc.identifier.citedreferenceDanabasoglu, G. ( 2019d ). NCAR CESM2-WACCM-FV2 model output prepared for CMIP6 CMIP historical, version 20190831  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.11298
dc.identifier.citedreferenceDaube, B. C., Boering, K. A., Andrews, A. E., & Wofsy, S. C. ( 2002 ). A high-precision fast-response airborne CO 2 analyzer for in situ sampling from the surface to the Middle stratosphere. Journal of Atmospheric and Oceanic Technology, 19 ( 10 ), 1532 – 1543. https://doi.org/10.1175/1520-0426(2002)019<1532:AHPFRA>2.0.CO;2
dc.identifier.citedreferenceDufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., et al. ( 2013 ). Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dynamics, 40 ( 9–10 ), 2123 – 2165. https://doi.org/10.1007/s00382-012-1636-1
dc.identifier.citedreferenceDunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Malyshev, S. L., et al. ( 2013 ). GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: Carbon system formulation and baseline simulation characteristics. Journal of Climate, 26 ( 7 ), 2247 – 2267. https://doi.org/10.1175/JCLI-D-12-00150.1
dc.identifier.citedreferenceEyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. ( 2016 ). Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9 ( 5 ), 1937 – 1958. https://doi.org/10.5194/gmd-9-1937-2016
dc.identifier.citedreferenceEyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., et al. ( 2019 ). Taking climate model evaluation to the next level. Nature Climate Change, 9 ( 2 ), 102 – 110. https://doi.org/10.1038/s41558-018-0355-y
dc.identifier.citedreferenceFernández-Martínez, M., Sardans, J., Chevallier, F., Ciais, P., Obersteiner, M., Vicca, S., et al. ( 2019 ). Global trends in carbon sinks and their relationships with CO 2 and temperature. Nature Climate Change, 9 ( 1 ), 73 – 79. https://doi.org/10.1038/s41558-018-0367-7
dc.identifier.citedreferenceFriedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., et al. ( 2006 ). Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. Journal of Climate, 19 ( 14 ), 3337 – 3353. https://doi.org/10.1175/JCLI3800.1
dc.identifier.citedreferenceFriedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., et al. ( 2022 ). Global carbon budget 2021. Earth System Science Data, 14 ( 4 ), 1917 – 2005. https://doi.org/10.5194/essd-14-1917-2022
dc.identifier.citedreferenceFriedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S. K., & Knutti, R. ( 2014 ). Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. Journal of Climate, 27 ( 2 ), 511 – 526. https://doi.org/10.1175/JCLI-D-12-00579.1
dc.identifier.citedreferenceFriend, A. D., Arneth, A., Kiang, N. Y., Lomas, M., Ogée, J., Rödenbeck, C., et al. ( 2007 ). FLUXNET and modelling the global carbon cycle. Global Change Biology, 13 ( 3 ), 610 – 633. https://doi.org/10.1111/j.1365-2486.2006.01223.x
dc.identifier.citedreferenceFung, I., Prentice, K., Matthews, E., Lerner, J., & Russell, G. ( 1983 ). Three-dimensional tracer model study of atmospheric CO 2: Response to seasonal exchanges with the terrestrial biosphere. Journal of Geophysical Research, 88 ( C2 ), 1281 – 1294. https://doi.org/10.1029/JC088iC02p01281
dc.identifier.citedreferenceFung, I. Y., Doney, S. C., Lindsay, K., & John, J. ( 2005 ). Evolution of carbon sinks in a changing climate. Proceedings of the National Academy of Sciences, 102 ( 32 ), 11201 – 11206. https://doi.org/10.1073/pnas.0504949102
dc.identifier.citedreferenceGaubert, B., Stephens, B. B., Basu, S., Chevallier, F., Deng, F., Kort, E. A., et al. ( 2019 ). Global atmospheric CO 2 inverse models converging on neutral tropical land exchange but diverging on fossil fuel and atmospheric growth rate. Biogeosciences Discussions, 1 – 25. https://doi.org/10.5194/bg-2018-384
dc.identifier.citedreferenceGent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., et al. ( 2011 ). The community climate system model version 4. Journal of Climate, 24 ( 19 ), 4973 – 4991. https://doi.org/10.1175/2011JCLI4083.1
dc.identifier.citedreferenceGraven, H. D., Keeling, R. F., Piper, S. C., Patra, P. K., Stephens, B. B., Wofsy, S. C., et al. ( 2013 ). Enhanced seasonal exchange of CO 2 by northern ecosystems since 1960. Science, 341 ( 6150 ), 1085 – 1089. https://doi.org/10.1126/science.1239207
dc.identifier.citedreferenceGurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., et al. ( 2002 ). Towards robust regional estimates of CO 2 sources and sinks using atmospheric transport models. Nature, 415 ( 6872 ), 626 – 630. https://doi.org/10.1038/415626a
dc.identifier.citedreferenceHu, Q., Li, T., Deng, X., Wu, T., Zhai, P., Huang, D., et al. ( 2022 ). Intercomparison of global terrestrial carbon fluxes estimated by MODIS and Earth system models. Science of the Total Environment, 810, 152231. https://doi.org/10.1016/j.scitotenv.2021.152231
dc.identifier.citedreferenceJacobson, A. R., Schuldt, K. N., Miller, J. B., Oda, T., Tans, P., Andrews, A., et al. ( 2020 ). CarbonTracker CT2019B  [Dataset]. NOAA Global Monitoring Laboratory. https://doi.org/10.25925/20201008
dc.identifier.citedreferenceJin, Y., Keeling, R. F., Morgan, E. J., Ray, E., Parazoo, N. C., & Stephens, B. B. ( 2021 ). A mass-weighted isentropic coordinate for mapping chemical tracers and computing atmospheric inventories. Atmospheric Chemistry and Physics, 21 ( 1 ), 217 – 238. https://doi.org/10.5194/acp-21-217-202
dc.identifier.citedreferenceJung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., et al. ( 2019 ). The FLUXCOM ensemble of global land-atmosphere energy fluxes [Dataset]. Scientific Data, 6 ( 1 ), 74. https://doi.org/10.1038/s41597-019-0076-8
dc.identifier.citedreferenceJung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., et al. ( 2020 ). Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences, 17 ( 5 ), 1343 – 1365. https://doi.org/10.5194/bg-17-1343-2020
dc.identifier.citedreferenceKeeling, C. D., Adams, J. A., Ekdahl, C. A., & Guenther, P. R. ( 1976 ). Atmospheric carbon dioxide variations at the South Pole. Tellus, 28 ( 6 ), 552 – 564. https://doi.org/10.1111/j.2153-3490.1976.tb00702.x
dc.identifier.citedreferenceKeeling, C. D., Chin, J. F. S., & Whorf, T. P. ( 1996 ). Increased activity of northern vegetation inferred from atmospheric CO 2 measurements. Nature, 382 ( 6587 ), 146 – 149. https://doi.org/10.1038/382146a0
dc.identifier.citedreferenceKeeling, R. F., & Graven, H. D. ( 2021 ). Insights from time series of atmospheric carbon dioxide and related tracers. Annual Review of Environment and Resources, 46 ( 1 ), 85 – 110. https://doi.org/10.1146/annurev-environ-012220-125406
dc.identifier.citedreferenceKeeling, R. F., & Manning, A. C. ( 2014 ). Studies of recent changes in atmospheric O 2 content. In Treatise on geochemistry. Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00420-4
dc.identifier.citedreferenceKeppel-Aleks, G., Randerson, J. T., Lindsay, K., Stephens, B. B., Keith Moore, J., Doney, S. C., et al. ( 2013 ). Atmospheric carbon dioxide variability in the community Earth system model: Evaluation and transient dynamics during the twentieth and twenty-first centuries. Journal of Climate, 26 ( 13 ), 4447 – 4475. https://doi.org/10.1175/JCLI-D-12-00589.1
dc.identifier.citedreferenceKhatiwala, S., Primeau, F., & Hall, T. ( 2009 ). Reconstruction of the history of anthropogenic CO 2 concentrations in the ocean. Nature, 462 ( 7271 ), 346 – 349. https://doi.org/10.1038/nature08526
dc.identifier.citedreferenceKrol, M., Houweling, S., Bregman, B., van den Broek, M., Segers, A., van Velthoven, P., et al. ( 2005 ). The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmospheric Chemistry and Physics, 5 ( 2 ), 417 – 432. https://doi.org/10.5194/acp-5-417-2005
dc.identifier.citedreferenceKumar, J., Hoffman, F., Hargrove, W., & Collier, N. ( 2016 ). Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements. In Earth system science data discussions (pp. 1 – 25 ). https://doi.org/10.5194/essd-2016-36
dc.identifier.citedreferenceLawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., et al. ( 2019 ). The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11 ( 12 ), 4245 – 4287. https://doi.org/10.1029/2018MS001583
dc.identifier.citedreferenceLee, W.-L., & Liang, H.-C. ( 2020 ). AS-RCEC TaiESM1.0 model output prepared for CMIP6 CMIP historical, version 20200616  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.9755
dc.identifier.citedreferenceLee, W.-L., Wang, Y.-C., Shiu, C.-J., Tsai, I., Tu, C.-Y., Lan, Y.-Y., et al. ( 2020 ). Taiwan Earth system model version 1: Description and evaluation of mean state. Geoscientific Model Development, 13 ( 9 ), 3887 – 3904. https://doi.org/10.5194/gmd-13-3887-2020
dc.identifier.citedreferenceLiptak, J., Keppel-Aleks, G., & Lindsay, K. ( 2017 ). Drivers of multi-century trends in the atmospheric CO 2 mean annual cycle in a prognostic ESM. Biogeosciences, 14 ( 6 ), 1383 – 1401. https://doi.org/10.5194/bg-14-1383-2017
dc.identifier.citedreferenceLong, M. C., Lindsay, K., Peacock, S., Moore, J. K., & Doney, S. C. ( 2013 ). Twentieth-century oceanic carbon uptake and storage in CESM1(BGC)*. Journal of Climate, 26 ( 18 ), 6775 – 6800. https://doi.org/10.1175/JCLI-D-12-00184.1
dc.identifier.citedreferenceLovato, T., & Peano, D. ( 2020 ). CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP historical, version 20200527  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.3825
dc.identifier.citedreferenceLovato, T., Peano, D., & Butenschön, M. ( 2021 ). CMCC CMCC-ESM2 model output prepared for CMIP6 CMIP historical, version 20201225  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.13195
dc.identifier.citedreferenceMao, J., Thornton, P. E., Shi, X., Zhao, M., & Post, W. M. ( 2012 ). Remote sensing evaluation of CLM4 GPP for the period 2000–09. Journal of Climate, 25 ( 15 ), 5327 – 5342. https://doi.org/10.1175/JCLI-D-11-00401.1
dc.identifier.citedreferenceNASA Goddard Institute for Space Studies (NASA/GISS). ( 2018 ). NASA-GISS GISS-E2.1G model output prepared for CMIP6 CMIP historical, version 20181015  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.7127
dc.identifier.citedreferenceNASA Goddard Institute for Space Studies (NASA/GISS). ( 2019 ). NASA-GISS GISS-E2.1H model output prepared for CMIP6 CMIP historical, version 20190328  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.7128
dc.identifier.citedreferenceNeubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stoll, J., Folini, D. S., Tegen, I., et al. ( 2019 ). HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 CMIP historical, version 20191124  [Dataset]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.5016
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.