Permeation of water contaminative phenols through hairless mouse skin
Ho, Norman F. H.; Condie, L.; Jetzer, W. E.; Flynn, Gordon L.; Husari, N.; Huq, A. S.
1986-09
Citation
Huq, A. S.; Ho, N. F. H.; Husari, N.; Flynn, G. L.; Jetzer, W. E.; Condie, L.; (1986). "Permeation of water contaminative phenols through hairless mouse skin." Archives of Environmental Contamination and Toxicology 15(5): 557-566. <http://hdl.handle.net/2027.42/48064>
Abstract
As a means of determining the risk of absorption of water contaminative phenolic compounds through the skin, the permeation of a number of phenols, all on the U.S. Environmental Protection Agency's list of priority pollutants, through hairless mouse skin has been studied, using in vitro diffusion cell methods. Experimentally determined permeability coefficients through intact skin and stratum corneum denuded skin and permeability coefficients derived therefrom for the viable tissue layer and the stratum corneum, which are the tissue's major contributing substrata, have been correlated with their log K octanol/water partition coefficients. Permeability coefficients for the whole skin and the stratum corneum systematically increased with increasing phenol lipophilicity to limiting values of about 0.15 and 0.30 cm/hr, respectively. The values of the permeability coefficients for the viable tissue were roughly the same for all compounds (≈0.36 cm/hr). Because of the inductive effects of Cl and NO 2 substituents on the aromatic ring, phenolic analogs containing these moieties are acidic and, consequently, their overall skin permeabilities were highly pH-dependent in the range of pH values seen for surface waters. High fluxes were noted for such phenols at low pH, where they exist essentially in a non-ionized state. Though low, fluxes of the compounds were measurable at pH's ≫ pK a 's, indicating that phenolic anions also pass through the skin. With the exceptions of relatively polar phenol and the mono-nitro phenols, the free acid forms of all the phenols studied permeated skin with ease and at rates approaching those of denuded skin. The intact skin permeability coefficient of the free acid form of 4-nitro phenol was exceptionally low, which suggests that it might associate intermolecularly.Publisher
Springer-Verlag; Springer-Verlag New York Inc.
ISSN
0090-4341 1432-0703
Other DOIs
PMID
3753043
Types
Article
Metadata
Show full item recordAccessibility: If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.