Search Constraints
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Skinner, Katherine A., Vasudevan, Ram, Ramanagopal, Manikandasriram S., Ravi, Radhika, Carmichael, Spencer, and Buchan, Austin D.
- Description:
- This dataset is part of a collection created to facilitate research in the use of novel sensors for autonomous vehicle perception. , The dataset collection platform is a Ford Fusion vehicle with a roof-mounted novel sensing suite, which specifically consists of forward-facing stereo uncooled thermal cameras (FLIR 40640U050-6PAAX), event cameras (iniVation DVXplorer), monochrome cameras (FLIR BFS-PGE-16S2M), and RGB cameras (FLIR BFS-PGE-50S5C) time synchronized with ground truth poses from a high precision navigation system. , and Further information and resources (such as software tools for converting, managing, and viewing data files) are available on the project website: https://umautobots.github.io/nsavp
- Keyword:
- novel sensing, perception, autonomous vehicles, thermal sensing, neuromorphic imaging, and event cameras
- Citation to related publication:
- https://umautobots.github.io/nsavp, https://github.com/umautobots/nsavp_tools, and https://sites.google.com/umich.edu/novelsensors2023
- Discipline:
- Engineering
-
- Creator:
- Skinner, Katherine A., Vasudevan, Ram, Ramanagopal, Manikandasriram S., Ravi, Radhika, Carmichael, Spencer, and Buchan, Austin D.
- Description:
- This dataset is part of a collection created to facilitate research in the use of novel sensors for autonomous vehicle perception. , The dataset collection platform is a Ford Fusion vehicle with a roof-mounted novel sensing suite, which specifically consists of forward-facing stereo uncooled thermal cameras (FLIR 40640U050-6PAAX), event cameras (iniVation DVXplorer), monochrome cameras (FLIR BFS-PGE-16S2M), and RGB cameras (FLIR BFS-PGE-50S5C) time synchronized with ground truth poses from a high precision navigation system. , Further information and resources (such as software tools for converting, managing, and viewing data files) are available on the project website: https://umautobots.github.io/nsavp , and CHANGE NOTICE (January 2024): We identified an error in our timestamp post-processing procedure that caused all camera timestamps to be offset by the exposure time of one of the cameras. We corrected the error, applied the corrected post-processing, and reuploaded the corrected files. The change impacts all camera data files. Prior to the change, the timestamps between the cameras were synchronized with submillisecond accuracy, but the camera and ground truth pose timestamps were offset by up to 0.4 ms, 3 ms, and 15 ms in the afternoon, sunset, and night sequences, respectively. This amounted in up to ~0.25 meters of position error in the night sequences. For consistency, camera calibration was rerun with the corrected calibration sequence files. The camera calibration results have therefore been updated as well, although they have not changed significantly. Finally, we previously downsampled the frame data in the uploaded calibration seqeuence, but we decided to provide the full frame data in the reupload.
- Keyword:
- novel sensing, perception, autonomous vehicles, thermal sensing, neuromorphic imaging, and event cameras
- Citation to related publication:
- https://sites.google.com/umich.edu/novelsensors2023, https://github.com/umautobots/nsavp_tools, and https://umautobots.github.io/nsavp
- Discipline:
- Engineering
-
Novel Sensors for Autonomous Vehicle Perception
User Collection- Creator:
- Skinner, Katherine A, Vasudevan, Ram, Ramanagopal, Manikandasriram S, Ravi, Radhika, Buchan, Austin D, and Carmichael, Spencer
- Description:
- The Novel Sensors for Autonomous Vehicle Perception Collection of datasets are sequences collected with an autonomous vehicle platform including data from novel sensors. The dataset collection platform is a Ford Fusion vehicle with a roof-mounted novel sensing suite, which specifically consists of forward-facing stereo uncooled thermal cameras (FLIR 40640U050-6PAAX), event cameras (iniVation DVXplorer), monochrome cameras (FLIR BFS-PGE-16S2M), and RGB cameras (FLIR BFS-PGE-50S5C) time synchronized with ground truth poses from a high precision navigation system. Sequences include ~8 km routes, driven repeatedly under varying lighting conditions and/or opposing viewpoints. Further information and resources are available on the project website: https://umautobots.github.io/nsavp
- Keyword:
- novel sensing, perception, autonomous vehicles, thermal sensing, neuromorphic imaging, and event cameras
- Citation to related publication:
- https://umautobots.github.io/nsavp, https://github.com/umautobots/nsavp_tools, and https://sites.google.com/umich.edu/novelsensors2023
- Discipline:
- Engineering
12Works -
- Creator:
- Luyet, Chloe, Elvati, Paolo, Vinh, Jordan, and Violi, Angela
- Description:
- A growing body of work has linked key biological activities to the mechanical properties of cellular membranes, and as a means of identification. Here, we present a computational approach to simulate and compare the vibrational spectra in the low-THz region for mammalian and bacterial membranes, investigating the effect of membrane asymmetry and composition, as well as the conserved frequencies of a specific cell. We find that asymmetry does not impact the vibrational spectra, and the impact of sterols depends on the mobility of the components of the membrane. We demonstrate that vibrational spectra can be used to distinguish between membranes and, therefore, could be used in identification of different organisms. The method presented, here, can be immediately extended to other biological structures (e.g., amyloid fibers, polysaccharides, and protein-ligand structures) in order to fingerprint and understand vibrations of numerous biologically-relevant nanoscale structures.
- Keyword:
- molecular dynamics, membranes, mechanical vibration, bacterial identification, and Staphylococcus aureus
- Citation to related publication:
- Luyet C, Elvati P, Vinh J, Violi A. Low-THz Vibrations of Biological Membranes. Membranes. 2023; 13(2):139. https://doi.org/10.3390/membranes13020139
- Discipline:
- Engineering
-
- Creator:
- Elvati, Paolo, Luyet, Chloe, Wang, Yichun, Liu, Changjiang, VanEpps, J. Scott, Kotov, Nicholas A., and Violi, Angela
- Description:
- Amyloid nanofibers are abundant in microorganisms and are integral components of many biofilms, serving various purposes, from virulent to structural. Nonetheless, the precise characterization of bacterial amyloid nanofibers has been elusive, with incomplete and contradicting results. The present work focuses on the molecular details and characteristics of PSMa1-derived functional amyloids present in Staphylococcus aureus biofilms, using a combination of computational and experimental techniques, to develop a model that can aid the design of compounds to control amyloid formation. Results from molecular dynamics simulations, guided and supported by spectroscopy and microscopy, show that PSMa1 amyloid nanofibers present a helical structure formed by two protofilaments, have an average diameter of about 12 nm, and adopt a left-handed helicity with a periodicity of approximately 72 nm. The chirality of the self-assembled nanofibers, an intrinsic geometric property of its constituent peptides, is central to determining the fibers' lateral growth.
- Keyword:
- molecular self-assembly, computational nanotechnology, nanobiotechnology, and structural properties
- Citation to related publication:
- Paolo Elvati, Chloe Luyet, Yichun Wang, Changjiang Liu, J. Scott VanEpps, Nicholas A. Kotov, and Angela Violi ACS Applied Nano Materials 2023 6 (8), 6594-6604 DOI: 10.1021/acsanm.3c00174
- Discipline:
- Engineering and Science
-
- Creator:
- Lee, Sophie Y., Schönhöfer Philipp W.A., and Glotzer, Sharon C.
- Description:
- This dataset was generated for our work: "Complex motion of steerable vesicular robots filled with active colloidal rods". In this project, we used Brownian molecular dynamics simulations to study the rich dynamical behavior of rigid kinked vesicles that contain self-propelling rod-shaped particles. We identified that kinks in the vesicle membrane bias the emergent clustering and alignment of the active agents. Based on the system's geometrical and material properties, we were able to design multiple types of directed motion of the vesicle superstructure. This dataset includes simulation data for two-dimensional systems of self-propelling rod particles confined by teardrop-shaped coarse-grained vesicles. The trajectory of each simulation is saved in a GSD format file with parameter metadata in a JSON file. Due to the large number of replicas of each pair of parameters, simulation data were grouped into 5 different folders. Collective quantitative analysis for simulated trajectories was performed with Jupyter Notebook. and Workspaces_simulations.zip contains all the workspaces of simulations Each folder has subfolders called 'dimer' and 'trimer' depending on the length of the propelling rod particles used in the simulation. (Except for the folder 'number-density_16' which has only 'dimer') In the subfolders, we include the Python scripts used in this work for simulating and trajectory analysis for individual trajectory data. The parameter space of each folder is noted in init.py. Analysis_jupyter_notebooks.zip includes Jupyter notebooks that can reproduce the collective analysis done for this work.
- Discipline:
- Engineering
-
- Creator:
- Wallace, Dylan M, Benyamini, Miri, Nason-Tomaszewski, Samuel R, Costello, Joseph T, Cubillos, Luis H, Mender, Matthew J, Temmar, Hisham, Willsey, Matthew S, Patil, Parag P, Chestek, Cynthia A, and Zacksenhouse, Miriam
- Description:
- This is data from Wallace, Benyamini et al., 2023, Journal of Neural Engineering. There are two sets of data included: 1. Neural features and error labels used to train error classifiers for each day used in the study 2. Trial data from an example experiment day (Monkey N, Day 6), with runs for offline calibration, online brain control, error monitoring, and error correction. The purpose of this study was to investigate the use of error signals in motor cortex to improve brain-machine interface (BMI) performance for control of two finger groups. All data is contained in .mat files, which can be opened using MATLAB or the Python SciPy library.
- Keyword:
- Brain-machine interface (BMI), Error detection, and Neural recording
- Citation to related publication:
- Wallace, D. M., Benyamini, M., Nason-Tomaszewski, S. R., Costello, J. T., Cubillos, L. H., Mender, M. J., Temmar, H., Willsey, M. S., Patil, P. G., Chestek, C. A., & Zacksenhouse, M. (2023). Error detection and correction in intracortical brain–machine interfaces controlling two finger groups. Journal of Neural Engineering, 20(4), 046037. https://doi.org/10.1088/1741-2552/acef95
- Discipline:
- Engineering, Science, and Health Sciences
-
- Creator:
- Sun, Hu, Ren, Jiaen, Chen, Yang, Zou, Shasha, Chang, Yurui, Wang, Zihan, and Coster, Anthea
- Description:
- Our research focuses on providing a fully-imputed map of the worldwide total electron content with high resolution and spatial-temporal smoothness. We fill in the missing values of the original Madrigal TEC maps via estimating the latent feature of each latitude and local time along the 2-D grid and give initial guess of the missing regions based on pre-computed spherical harmonics map. The resulting TEC map has high imputation accuracy and the ease of reproducing. All data are in HDF5 format and are easy to read using the h5py package in Python. The TEC map is grouped in folders based on years and each file contains a single-day data of 5-min cadence. Each individual TEC map is of size 181*361. and WARNING: 2023-12-01 the data file for 2019-Jan-03 has badly fitted values. Please avoid using it. All other days' files are ready to use.
- Keyword:
- Total Electron Content, Matrix Completion, VISTA, Spherical Harmonics, and Spatial-Temporal Smoothing
- Citation to related publication:
- Sun, H., Hua, Z., Ren, J., Zou, S., Sun, Y., & Chen, Y. (2022). Matrix completion methods for the total electron content video reconstruction. The Annals of Applied Statistics, 16(3), 1333-1358., Sun, H., Chen, Y., Zou, S., Ren, J., Chang, Y., Wang, Z., & Coster, A. (2023). Complete Global Total Electron Content Map Dataset based on a Video Imputation Algorithm VISTA. Scientific Data, in press., and Zou, S., Ren, J., Wang, Z., Sun, H., & Chen, Y. (2021). Impact of storm-enhanced density (SED) on ion upflow fluxes during geomagnetic storm. Frontiers in Astronomy and Space Sciences, 8, 746429.
- Discipline:
- Science and Engineering
-
- Creator:
- Klinich, Kathleen D, Lin, Brian, and Moore, Jamie L.
- Description:
- This dataset allows comparison of the different strategies implemented by vehicle manufacturers being used to communicate with drivers. Spreadsheets were created in MS Excel to summarize data for each vehicle, and include page numbers in each vehicle owner's manual for reference. The photos taken of each vehicle control panel allow detailed inspection of the displays and controls.
- Keyword:
- vehicle, controls, displays, and FMVSS 101
- Discipline:
- Engineering
-
- Creator:
- Brian, Chen
- Description:
- The procedure followed while creating this data is summarized in Section II of Chen, Brian, et al. "Behavioral cloning in atari games using a combined variational autoencoder and predictor model." 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2021. This data is not a result of a research but an intermediate product that is used in research. This dataset is generated to train a behavioral cloning framework from gameplay screen captures and keystrokes of an "expert" player. The RL agent that is trained using "RL Baselines Zoo package" acts as the "expert" player, whose decision making process we desire to learn. In addition to behavioral cloning experiments, this dataset is further used to demonstrate the efficacy of a novel incremental tensor decomposition algorithm on image-based data streams.
- Keyword:
- Imitation Learning, Behavioral Cloning, Reinforcement Learning, Machine Learning, and Gameplay Data
- Citation to related publication:
- Chen, Brian, et al. "Behavioral cloning in atari games using a combined variational autoencoder and predictor model." 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2021., Aksoy, Doruk, et al. "An Incremental Tensor Train Decomposition Algorithm." arXiv preprint arXiv:2211.12487 (2022)., and Chen, Brian, et al. "Low-Rank Tensor-Network Encodings for Video-to-Action Behavioral Cloning", forthcoming
- Discipline:
- Engineering and Science