Search Constraints
Filtering by:
Language
English
Remove constraint Language: English
Discipline
Engineering
Remove constraint Discipline: Engineering
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Ali, Hashim, Subramani, Surya , Sudhir, Shefali , Varahamurthy, Raksha , and Malik, Hafiz
- Description:
- Voice-cloning (VC) systems have seen an exceptional increase in the realism of synthesized speech in recent years. The high quality of synthesized speech and the availability of low-cost VC services have given rise to many potential abuses of this technology such as online smearing campaigns and dissemination of fabricated information etc. A number of detection methodologies have been proposed over the years that can detect voice spoofs with reasonably good accuracy. However, these methodologies are mostly evaluated on clean audio databases, such as Asvspoof 2019. This research aims to evaluate state-of-the-art (SOTA) Audio Spoof Detection approaches in the presence of laundering attacks. In that regard, a new laundering attack database, called ASVspoof Laundering Database, is created. This database is based on the ASVspoof 2019 LA eval database comprising a total of 1388.22 hours of audio recordings. Seven SOTA audio spoof detection approaches are evaluated on this laundered database. The results indicate that SOTA systems perform poorly in the presence of aggressive laundering attacks, especially reverberation and additive noise attacks. This suggests the need for robust audio spoof detection.
- Keyword:
- Audio Forensics, Audio Antispoofing, Audio Deepfakes, ASVSpoof, and Machine Learning
- Discipline:
- Engineering
-
- Creator:
- Fu, Xun, Zhang, Bohao, Weber, Ceri J., Cooper, Kimberly L., Vasudevan, Ram, and Moore, Talia Y.
- Description:
- Tails used as inertial appendages induce body rotations of animals and robots---a phenomenon that is governed largely by the ratio of the body and tail moments of inertia. However, vertebrate tails have more degrees of freedom (e.g., number of joints, rotational axes) than most current theoretical models and robotic tails. To understand how morphology affects inertial appendage function, we developed an optimization-based approach that finds the maximally effective tail trajectory and measures error from a target trajectory. For tails of equal total length and mass, increasing the number of equal-length joints increased the complexity of maximally effective tail motions. When we optimized the relative lengths of tail bones while keeping the total tail length, mass, and number of joints the same, this optimization-based approach found that the lengths match the pattern found in the tail bones of mammals specialized for inertial maneuvering. In both experiments, adding joints enhanced the performance of the inertial appendage, but with diminishing returns, largely due to the total control effort constraint. This optimization-based simulation can compare the maximum performance of diverse inertial appendages that dynamically vary in moment of inertia in 3D space, predict inertial capabilities from skeletal data, and inform the design of robotic inertial appendages.
- Keyword:
- simulation, inertial maneuvering, caudal vertebrae, trajectory optimization, and reconfigurable appendages
- Citation to related publication:
- Xun Fu, Bohao Zhang, Ceri J. Weber, Kimberly L. Cooper, Ram Vasudevan, Talia Y. Moore. (in review) Jointed tails enhance control of three-dimensional body rotation.
- Discipline:
- Engineering and Science
-
- Creator:
- Shah, Bhavarth
- Description:
- The three approaches used three distinct datasets named as follows: Historicalwater_levels.csv, Historical_Precipitation.csv, and Bayesian Statistical dataset.csv. These files are accessible using Microsoft Office or similar software. The machine learning models are developed in Jupyter Notebook (.ipynb) files, named according to the datasets they utilize. However, for the third approach, the models are named Random Forest, LSTM Model Base, and Multivariate LSTM Models. More details are available on the Shah_Bhavarth_Readme.txt. These notebooks can be accessed through Python, Project Jupyter, or Google Colab, and dependencies include libraries such as Pandas, NumPy, Matplotlib, Scikit-learn, Keras, and TensorFlow. The supplementary material also includes Excel files for stage-curve calculations and diversions, named Water_levels_Stage_Curve_Calculations1970-2018.xlsx and Diversions_calculation.xlsx, respectively.
- Keyword:
- Machine learning, Forecasting, Water levels, Mono lake, and Hydrology
- Citation to related publication:
- Shah, Bhavarth. 2024. "Mono Lake Water Levels Forecasting Using Machine Learning." Master’s thesis, University of Michigan, School for Environment and Sustainability. ORCID iD: 0000-0002-2391-8610. https://dx.doi.org/10.7302/22659
- Discipline:
- Science and Engineering
-
- Creator:
- Hong, Yi, Fry, Lauren M., Orendorf, Sophie, Ward, Jamie L., Mroczka, Bryan, Wright, David, and Gronewold, Andrew
- Description:
- Accurate estimation of hydro-meteorological variables is essential for adaptive water management in the North American Laurentian Great Lakes. However, only a limited number of monthly datasets are available nowadays that encompass all components of net basin supply (NBS), such as over-lake precipitation (P), evaporation (E), and total runoff (R). To address this gap, we developed a daily hydro-meteorological dataset covering an extended period from 1979 to 2022 for each of the Great Lakes. The daily P and E were derived from six global gridded reanalysis climate datasets (GGRCD) that include both P and E estimates, and R was calculated from National Water Model (NWM) simulations. Ensemble mean values of the difference between P and E (P – E) and NBS were obtained by analyzing daily P, E, and R. Monthly averaged values derived from our new daily dataset were validated against existing monthly datasets. This daily hydro-meteorological dataset has the potential to serve as a validation resource for current data and analysis of individual NBS components. Additionally, it could offer a comprehensive depiction of weather and hydrological processes in the Great Lakes region, including the ability to record extreme events, facilitate enhanced seasonal analysis, and support hydrologic model development and calibration. The source code and data representation/analysis figures are also made available in the data repository.
- Keyword:
- Great Lakes, Hydrometeorological, National Water Model, Daily, Overlake precipitation, Overlake evaporation, Total runoff, Net Basin Supply, and Water Balance
- Discipline:
- Science and Engineering
-
- Creator:
- Klinich, Kathleen D, Hu, Jingwen, Boyle, Kyle J, Manary, Miriam A., and Orton, Nichole R
- Description:
- As part of a project to develop side impact test procedures for evaluating wheelchairs, wheelchair tiedowns and occupant restraint systems (WTORS), and vehicle-based occupant protection systems for wheelchair seating stations, we created validated finite element (FE) models to support procedure development. Models were constructed using LS-DYNA. Dynamic sled tests were performed to validate the FE models of surrogate fixtures and commercial hardware. Validated FE models were developed for the Surrogate wheelchair base (SWCB), Surrogate wheelchair for side impact (SWCSI), a manual wheelchair (Ki Mobility Catalyst 5), and a power wheelchair (Quantum Rehab Edge 2.0). Additional FE models of a heavy-duty anchor meeting the Universal Docking Interface Geometry (UDIG), surrogate four-point strap tiedowns (SWTORS), a traditional docking station, and the surrogate wall fixture were also developed.
- Keyword:
- finite element, wheelchair, transportation, and tiedown
- Discipline:
- Engineering
-
- Creator:
- Lee, Shih Kuang, Tsai, Sun Ting, and Glotzer, Sharon C.
- Description:
- The trajectory data and codes were generated for our work "Classification of complex local environments in systems of particle shapes through shape-symmetry encoded data augmentation" (amidst peer review process). The data sets contain trajectory data in GSD file format for 7 test systems, including cubic structures, two-dimensional and three-dimensional patchy particle shape systems, hexagonal bipyramids with two aspect ratios, and truncated shapes with two degrees of truncation. Besides, the corresponding Python code and Jupyter notebook used to perform data augmentation, MLP classifier training, and MLP classifier testing are included.
- Keyword:
- Machine Learning, Colloids Self-Assembly, Crystallization, and Order Parameter
- Citation to related publication:
- https://doi.org/10.48550/arXiv.2312.11822
- Discipline:
- Other, Science, and Engineering
-
- Creator:
- Luyet, Chloe, Elvati, Paolo, Vinh, Jordan, and Violi, Angela
- Description:
- A growing body of work has linked key biological activities to the mechanical properties of cellular membranes, and as a means of identification. Here, we present a computational approach to simulate and compare the vibrational spectra in the low-THz region for mammalian and bacterial membranes, investigating the effect of membrane asymmetry and composition, as well as the conserved frequencies of a specific cell. We find that asymmetry does not impact the vibrational spectra, and the impact of sterols depends on the mobility of the components of the membrane. We demonstrate that vibrational spectra can be used to distinguish between membranes and, therefore, could be used in identification of different organisms. The method presented, here, can be immediately extended to other biological structures (e.g., amyloid fibers, polysaccharides, and protein-ligand structures) in order to fingerprint and understand vibrations of numerous biologically-relevant nanoscale structures.
- Keyword:
- molecular dynamics, membranes, mechanical vibration, bacterial identification, and Staphylococcus aureus
- Citation to related publication:
- Luyet C, Elvati P, Vinh J, Violi A. Low-THz Vibrations of Biological Membranes. Membranes. 2023; 13(2):139. https://doi.org/10.3390/membranes13020139
- Discipline:
- Engineering
-
- Creator:
- Elvati, Paolo, Luyet, Chloe, Wang, Yichun, Liu, Changjiang, VanEpps, J. Scott, Kotov, Nicholas A., and Violi, Angela
- Description:
- Amyloid nanofibers are abundant in microorganisms and are integral components of many biofilms, serving various purposes, from virulent to structural. Nonetheless, the precise characterization of bacterial amyloid nanofibers has been elusive, with incomplete and contradicting results. The present work focuses on the molecular details and characteristics of PSMa1-derived functional amyloids present in Staphylococcus aureus biofilms, using a combination of computational and experimental techniques, to develop a model that can aid the design of compounds to control amyloid formation. Results from molecular dynamics simulations, guided and supported by spectroscopy and microscopy, show that PSMa1 amyloid nanofibers present a helical structure formed by two protofilaments, have an average diameter of about 12 nm, and adopt a left-handed helicity with a periodicity of approximately 72 nm. The chirality of the self-assembled nanofibers, an intrinsic geometric property of its constituent peptides, is central to determining the fibers' lateral growth.
- Keyword:
- molecular self-assembly, computational nanotechnology, nanobiotechnology, and structural properties
- Citation to related publication:
- Paolo Elvati, Chloe Luyet, Yichun Wang, Changjiang Liu, J. Scott VanEpps, Nicholas A. Kotov, and Angela Violi ACS Applied Nano Materials 2023 6 (8), 6594-6604 DOI: 10.1021/acsanm.3c00174
- Discipline:
- Engineering and Science
-
- Creator:
- Wallace, Dylan M, Benyamini, Miri, Nason-Tomaszewski, Samuel R, Costello, Joseph T, Cubillos, Luis H, Mender, Matthew J, Temmar, Hisham, Willsey, Matthew S, Patil, Parag P, Chestek, Cynthia A, and Zacksenhouse, Miriam
- Description:
- This is data from Wallace, Benyamini et al., 2023, Journal of Neural Engineering. There are two sets of data included: 1. Neural features and error labels used to train error classifiers for each day used in the study 2. Trial data from an example experiment day (Monkey N, Day 6), with runs for offline calibration, online brain control, error monitoring, and error correction. The purpose of this study was to investigate the use of error signals in motor cortex to improve brain-machine interface (BMI) performance for control of two finger groups. All data is contained in .mat files, which can be opened using MATLAB or the Python SciPy library.
- Keyword:
- Brain-machine interface (BMI), Error detection, and Neural recording
- Citation to related publication:
- Wallace, D. M., Benyamini, M., Nason-Tomaszewski, S. R., Costello, J. T., Cubillos, L. H., Mender, M. J., Temmar, H., Willsey, M. S., Patil, P. G., Chestek, C. A., & Zacksenhouse, M. (2023). Error detection and correction in intracortical brain–machine interfaces controlling two finger groups. Journal of Neural Engineering, 20(4), 046037. https://doi.org/10.1088/1741-2552/acef95
- Discipline:
- Engineering, Science, and Health Sciences
-
- Creator:
- Sun, Hu, Ren, Jiaen, Chen, Yang, Zou, Shasha, Chang, Yurui, Wang, Zihan, and Coster, Anthea
- Description:
- Our research focuses on providing a fully-imputed map of the worldwide total electron content with high resolution and spatial-temporal smoothness. We fill in the missing values of the original Madrigal TEC maps via estimating the latent feature of each latitude and local time along the 2-D grid and give initial guess of the missing regions based on pre-computed spherical harmonics map. The resulting TEC map has high imputation accuracy and the ease of reproducing. All data are in HDF5 format and are easy to read using the h5py package in Python. The TEC map is grouped in folders based on years and each file contains a single-day data of 5-min cadence. Each individual TEC map is of size 181*361. and WARNING: 2023-12-01 the data file for 2019-Jan-03 has badly fitted values. Please avoid using it. All other days' files are ready to use.
- Keyword:
- Total Electron Content, Matrix Completion, VISTA, Spherical Harmonics, and Spatial-Temporal Smoothing
- Citation to related publication:
- Sun, H., Hua, Z., Ren, J., Zou, S., Sun, Y., & Chen, Y. (2022). Matrix completion methods for the total electron content video reconstruction. The Annals of Applied Statistics, 16(3), 1333-1358., Sun, H., Chen, Y., Zou, S., Ren, J., Chang, Y., Wang, Z., & Coster, A. (2023). Complete Global Total Electron Content Map Dataset based on a Video Imputation Algorithm VISTA. Scientific Data, in press., and Zou, S., Ren, J., Wang, Z., Sun, H., & Chen, Y. (2021). Impact of storm-enhanced density (SED) on ion upflow fluxes during geomagnetic storm. Frontiers in Astronomy and Space Sciences, 8, 746429.
- Discipline:
- Science and Engineering