Search Constraints
« Previous |
31 - 40 of 40
|
Next »
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Iong, Daniel, Chen, Yang, Toth, Gabor, Zou, Shasha, Pulkkinen, Tuija I., Ren, Jiaen, Camporeale, Enrico, and Gombosi, Tamas I. I.
- Description:
- In this work, we trained gradient boosted trees using XGBoost to predict the SYM-H forecasting using different combinations of solar wind and interplanetary magnetic field (IMF) parameters. Data are in csv and Python pickle formats.
- Keyword:
- SYM-H forecasting
- Citation to related publication:
- Iong, D., Y. Chen, G. Toth, S. Zou, T. I. Pulkkinen, J. Ren, E. Camporeale, and T. I. Gombosi, New Findings from Explainable SYM-H Forecasting using Gradient Boosting Machines, Space Weather,11, accepted, 2022. https://doi.org/10.1002/essoar.10508063.3
- Discipline:
- Science
-
- Creator:
- Dulka, Eden A
- Description:
- This data is a subset of that originally produced as part of an effort to characterize GnRH neuron activity during prepubertal development in control and PNA mice and investigate the potential influences of sex and PNA treatment on this process (1). It was later used in (2) to further investigate the firing patterns of GnRH neurons in these categories of mice and determine how these patterns might differ based on age and treatment condition. The data files can be opened and examined using Wavemetric's Igor Pro software. Code used to further examine and visualize the data can be found at https://gitlab.com/um-mip/mc-project-code. This research was supported by National Institute of Health/Eunice Kennedy Shriver National Institute of Child Health and Human Development R01 HD34860 and P50 HD28934. (1) Dulka EA, Moenter SM. Prepubertal development of gonadotropin-releasing hormone (GnRH) neuron activity is altered by sex, age and prenatal androgen exposure. Endocrinology 2017; 158:3941-3953 (2) Penix JJ, DeFazio RA, Dulka EA, Schnell S, Moenter SM. Firing patterns of gonadotropin-releasing hormone (GnRH) neurons are sculpted by their biology. Pending.
- Keyword:
- action potential, Monte Carlo, polycystic ovary syndrome, puberty, and androgen
- Citation to related publication:
- Dulka EA, Moenter SM. Prepubertal development of gonadotropin-releasing hormone neuron activity is altered by sex, age and prenatal androgen exposure. Endocrinology 2017; 158:3943-3953. https://dx.doi.org/10.1210%2Fen.2017-00768 and Penix JJ, DeFazio RA, Dulka EA, Schnell S, Moenter SM. Firing patterns of gonadotropin-releasing hormone (GnRH) neurons are sculpted by their biology. Pending.
- Discipline:
- Health Sciences
-
- Creator:
- Arthurs, Christopher J., Khlebnikov, Rostislav, Melville, Alexander, Marčan, Marija, Gomez, Alberto, Dillon-Murphy, Desmond, Cuomo, Federica, Vieira, Miguel, Schollenberger, Jonas, Lynch, Sabrina, Tossas-Betancourt, Christopher, Iyer, Kritika, Hopper, Sara, Livingston, Elizabeth, Youssefi, Pouya, Noorani, Alia, Ben Ahmed, Sabrina, Nauta, Foeke J.N., van Bakel, Theodorus M.J., Ahmed, Yunus, van Bakel, Petrus A.J., Mynard, Jonathan, Di Achille, Paolo, Gharahi, Hamid, Lau, Kevin D., Filonova, Vasilina, Aguirre, Miquel, Nama, Nitesh, Xiao, Nan, Baek, Seungik, Garikipati, Krishna, Sahni, Onkar, Nordsletten, David, and Figueroa, Carlos A.
- Description:
- This repository contains the source code for the CRIMSON Flow Solver as required in the PLOS Computational Biology publication: CRIMSON: An Open-Source Software Framework for Cardiovascular Integrated Modelling and Simulation by the same authors., This is a snapshot of the software. Please visit https://github.com/carthurs/CRIMSONFlowsolver/releases/tag/PLOS_Comp_Bio & www.crimson.software for more general information and the most up to date version of the software. , and Software can be compiled in Cygwin and Linux.
- Keyword:
- Blood Flow Simulation, Patient-specific, Open-source Software, Image-based simulation, Cardiovascular Medical Image, Segmentation, and Finite Element Simulation
- Citation to related publication:
- CRIMSON: An Open-Source Software Framework for Cardiovascular Integrated Modelling and Simulation C.J. Arthurs, R. Khlebnikov, A. Melville, M. Marčan, A. Gomez, D. Dillon-Murphy, F. Cuomo, M.S. Vieira, J. Schollenberger, S.R. Lynch, C. Tossas-Betancourt, K. Iyer, S. Hopper, E. Livingston, P. Youssefi, A. Noorani, S. Ben Ahmed, F.J.H. Nauta, T.M.J. van Bakel, Y. Ahmed, P.A.J. van Bakel, J. Mynard, P. Di Achille, H. Gharahi, K. D. Lau, V. Filonova, M. Aguirre, N. Nama, N. Xiao, S. Baek, K. Garikipati, O. Sahni, D. Nordsletten, C.A. Figueroa bioRxiv 2020.10.14.339960; doi: https://doi.org/10.1101/2020.10.14.339960 and Arthurs, C., Khlebnikov, R., Melville, A., Marčan, M., Gomez, A., Dillon-Murphy, D., Cuomo, F., Vieira, M., Schollenberger, J., Lynch, S., Tossas-Betancourt, C., Iyer, K., Hopper, S., Livingston, E., Youssefi, P., Noorani, A., Ben Ahmed, S., Nauta, F., van Bakel, T., Ahmed, Y., van Bakel, P., Mynard, J., Di Achille, P., Gharahi, H., Lau, K., Filonova, V., Aguirre, M., Nama, N., Xiao, N., Baek, S., Garikipati, K., Sahni, O., Nordsletten, D., Figueroa, C. (2021). CRIMSON open source project - Graphical User Interface (GUI) Source Code for PLOS Computational Biology [Data set]. University of Michigan - Deep Blue. https://doi.org/10.7302/679b-dw96
- Discipline:
- Engineering and Health Sciences
-
- Creator:
- Agnit Mukhopadhyay
- Description:
- Conducting quantitative metrics-based performance analysis of first-principles-based global magnetosphere models is an essential step in understanding their capabilities and limitations, and providing scope for improvements in order to enhance their space weather prediction capabilities for a range of solar conditions. In this study, a detailed comparison of the performance of three global magnetohydrodynamic (MHD) models in predicting the Earth’s magnetopause location and ionospheric cross polar cap potential (CPCP) has been presented. Using the Community Coordinated Modeling Center’s Run-on-Request system and extensive database on results from various magnetospheric scenarios simulated for a variety of solar wind conditions, the aforementioned model predictions have been compared for magnetopause standoff distance estimations obtained from six empirical models, and with cross polar cap potential estimations obtained from the Assimmilative Mapping of Ionospheric Electrodynamics (AMIE) Model and the Super Dual Auroral Radar Network (SuperDARN) observations. We have considered a range of events spanning different space weather activity to analyze the performance of these models. Using a fit performance metric analysis for each event, we have quantified the models’ reproducibility of magnetopause standoff distances and CPCP against empirically-predicted observations, and identified salient features that govern the performance characteristics of the modeled magnetospheric and ionospheric quantities.
- Citation to related publication:
- Mukhopadhyay, A., Jia, X., Welling, D. T., & Liemohn, M. W. (2021). Global Magnetohydrodynamic Simulations: Performance Quantification of Magnetopause Distances and Convection Potential Predictions. Frontiers in Astronomy and Space Sciences, 8. https://doi.org/10.3389/fspas.2021.637197
- Discipline:
- Engineering and Science
-
- Creator:
- Nason, Samuel R., Vaskov, Alex K., Willsey, Matthew S., Welle, Elissa J., An, Hyochan, Vu, Philip P., Bullard, Autumn J., Nu, Chrono S., Kao, Jonathan C., Shenoy, Krishna V., Jang, Taekwang, Kim, Hun-Seok, Blaauw, David, Patil, Parag G., and Chestek, Cynthia A.
- Description:
- This data is a subset of the data used to generate figures similar to figures 1, 2, 3, and 4 in Nason et al., 2020, Nature Biomedical Engineering. The purpose of the study was to demonstrate the benefits of using spiking band power, a low-power but single unit specific recording signal, for brain-machine interfaces with nonhuman primates with the potential to impact low-power brain-machine interfaces with humans. All of the data is contained in .mat files, which can be commonly opened by Matlab and the Python scipy library.
- Keyword:
- Brain-machine interface, Prosthesis, and Neural recording
- Citation to related publication:
- Nason, S.R., Vaskov, A.K., Willsey, M.S., Welle, E.J., An, H., Vu, P.P., Bullard, A.J., Nu, C.S., Kao, J.C., Shenoy, K.V., Jang, T., Kim, H.-S., Blaauw, D., Patil, P.G., and Chestek, C.A. (2020). A low-power band of neuronal spiking activity dominated by local single units improves the performance of brain–machine interfaces. Nat. Biomed. Eng. 4, 973–983. https://doi.org/10.1038/s41551-020-0591-0
- Discipline:
- Engineering
-
- Creator:
- Nason, Samuel R., Mender, Matthew J., Vaskov, Alex K., Willsey, Matthew S., Ganesh Kumar, N., Kung, Theodore A., Patil, Parag G., and Chestek, Cynthia A.
- Description:
- This data is a subset of the data used to generate components of all figures in the manuscript and supplement in Nason et al., 2021, Neuron. The purpose of the study was to demonstrate the first-ever simultaneous brain-control of two independent groups of fingers in one hand with some analysis of cortical tuning to finger movements in nonhuman primates. This advises future brain-machine interfaces for the control of finger movements with humans. All of the data is contained in .mat files, which can be commonly opened by Matlab and the Python scipy library. The Matlab packages (and versions) used for the manuscript are: MATLAB (9.4), Signal Processing Toolbox (8.0), Statistics and Machine Learning Toolbox (11.3), and Curve Fitting Toolbox (3.5.7).
- Keyword:
- Brain-machine interface, Prosthesis, and Upper extremity
- Citation to related publication:
- Nason, S.R., Mender, M.J., Vaskov, A.K., Willsey, M.S., Ganesh Kumar, N., Kung, T.A., Patil, P.G., and Chestek, C.A. (2021). Real-Time Linear Prediction of Simultaneous and Independent Movements of Two Finger Groups Using an Intracortical Brain-Machine Interface. Neuron (accepted).
- Discipline:
- Engineering
-
- Creator:
- Arthurs, Christopher J., Khlebnikov, Rostislav, Melville, Alexander, Marčan, Marija, Gomez, Alberto, Dillon-Murphy, Desmond, Cuomo, Federica, Vieira, Miguel, Schollenberger, Jonas, Lynch, Sabrina, Tossas-Betancourt, Christopher, Iyer, Kritika, Hopper, Sara, Livingston, Elizabeth, Youssefi, Pouya, Noorani, Alia, Ben Ahmed, Sabrina, Nauta, Foeke J.N., van Bakel, Theodorus M.J., Ahmed, Yunus, van Bakel, Petrus A.J., Mynard, Jonathan, Di Achille, Paolo, Gharahi, Hamid, Lau, Kevin D., Filonova, Vasilina, Aguirre, Miquel, Nama, Nitesh, Xiao, Nan, Baek, Seungik, Garikipati, Krishna, Sahni, Onkar, Nordsletten, David, and Figueroa, Carlos A.
- Description:
- This repository contains the source code for the CRIMSON GUI, as required in the PLOS Computational Biology publication: CRIMSON: An Open-Source Software Framework for Cardiovascular Integrated Modelling and Simulation by the same authors., This is a snapshot of the software; build dependencies can be found at https://doi.org/10.7302/ssj9-n788. Please visit https://github.com/carthurs/CRIMSONGUI/releases/tag/PLOS_Comp_Bio & www.crimson.software for more general information and the most up to date version of the software., and Software can be compiled in Windows.
- Keyword:
- Blood Flow Simulation, Patient-specific, Open-source Software, Image-based simulation, Cardiovascular Medical Image, Segmentation, and Finite Element Simulation
- Citation to related publication:
- CRIMSON: An Open-Source Software Framework for Cardiovascular Integrated Modelling and Simulation C.J. Arthurs, R. Khlebnikov, A. Melville, M. Marčan, A. Gomez, D. Dillon-Murphy, F. Cuomo, M.S. Vieira, J. Schollenberger, S.R. Lynch, C. Tossas-Betancourt, K. Iyer, S. Hopper, E. Livingston, P. Youssefi, A. Noorani, S. Ben Ahmed, F.J.H. Nauta, T.M.J. van Bakel, Y. Ahmed, P.A.J. van Bakel, J. Mynard, P. Di Achille, H. Gharahi, K. D. Lau, V. Filonova, M. Aguirre, N. Nama, N. Xiao, S. Baek, K. Garikipati, O. Sahni, D. Nordsletten, C.A. Figueroa bioRxiv 2020.10.14.339960; doi: https://doi.org/10.1101/2020.10.14.339960 and Computational Vascular Biomechanics Lab @ the University of Michigan and other collaborators, The Qt Company, NSIS Team and contributors, PostgreSQL Global Development Group, Oracle Corporation, Kitware. CRIMSON open source project - Build Dependencies [Data set], (2021). University of Michigan - Deep Blue. https://doi.org/10.7302/ssj9-n788
- Discipline:
- Health Sciences and Engineering
-
- Creator:
- Xiantong Wang
- Description:
- We perform a geomagnetic event simulation using a newly developed magnetohydrodynamic with adaptively embedded particle-in-cell (MHD-AEPIC) model. We have developed effective criteria to identify reconnection sites in the magnetotail and cover them with the PIC model. The MHD-AEPIC simulation results are compared with Hall MHD and ideal MHD simulations to study the impacts of kinetic reconnection at multiple physical scales. At the global scale, the three models produce very similar SYM-H and SuperMag Electrojet (SME) indexes, which indicates that the global magnetic field configurations from the three models are very close to each other. At the mesoscale we compare the simulations with in situ Geotail observations in the tail. All three models produce reasonable agreement with the Geotail observations. The MHD-AEPIC and Hall MHD models produce tailward and earthward propagating fluxropes, while the ideal MHD simulation does not generate flux ropes in the near-earth current sheet. At the kinetic scales, the MHD-AEPIC simulation can produce a crescent shape distribution of the electron velocity space at the electron diffusion region which agrees very well with MMS observations near a tail reconnection site. These electron scale kinetic features are not available in either the Hall MHD or ideal MHD models. Overall, the MHD-AEPIC model compares well with observations at all scales, it works robustly, and the computational cost is acceptable due to the adaptive adjustment of the PIC domain.
- Keyword:
- MHD, PIC, and Magnetosphere
- Discipline:
- Science
-
- Creator:
- Penner, Joyce E., Zhou, Cheng, Garnier, Anne, and Mitchell, David
- Description:
- This data set contains the scripts and data sets needed to create the 9 figures in the referenced publication.
- Keyword:
- Anthropogenic Aerosol indirect effects, cirrus clouds, and ice nucleation
- Citation to related publication:
- Penner, J. E., Zhou, C., Garnier, A., & Mitchell, D. L. (2018). Anthropogenic aerosol indirect effects in cirrus clouds. Journal of Geophysical Research: Atmospheres,123, 11,652–11,677. https://doi.org/10.1029/2018JD029204
- Discipline:
- Science
-
- Creator:
- Wang, Zihan
- Description:
- SWMF is used to study the segmentation of SED plume into polar cap patches during the geomagnetic storm on Sep 7, 2017. The database includes the 3D output in the upper atmosphere from GITM, the 2D output from Ionospheric Electrodynamics (IE) and 3D output from BATSRUS. The output from GITM can be read with thermo_batch_new.pro. The output from IE can be opened with Spacepy at https://pythonhosted.org/SpacePy/. The output from BATSRUS can be opened with tecplot. More details can be found in Readme.txt.
- Keyword:
- MHD and Ionosphere
- Citation to related publication:
- Wang, Z., Zou, S., Coppeans, T., Ren, J., Ridley, A., & Gombosi, T. (2019). Segmentation of SED by Boundary Flows Associated With Westward Drifting Partial Ring current. Geophysical Research Letters, 46(14), 7920–7928. https://doi.org/10.1029/2019GL084041
- Discipline:
- Science
- « Previous
- Next »
- 1
- 2
- 3
- 4