Show simple item record

Detecting Urban Emissions Changes and Events With a Near‐Real‐Time‐Capable Inversion System

dc.contributor.authorWare, John
dc.contributor.authorKort, Eric A.
dc.contributor.authorDuren, Riley
dc.contributor.authorMueller, Kimberly L
dc.contributor.authorVerhulst, Kristal
dc.contributor.authorYadav, Vineet
dc.date.accessioned2019-06-20T17:05:23Z
dc.date.available2020-07-01T17:47:46Zen
dc.date.issued2019-05-16
dc.identifier.citationWare, John; Kort, Eric A.; Duren, Riley; Mueller, Kimberly L; Verhulst, Kristal; Yadav, Vineet (2019). "Detecting Urban Emissions Changes and Events With a Near‐Real‐Time‐Capable Inversion System." Journal of Geophysical Research: Atmospheres 124(9): 5117-5130.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/149534
dc.description.abstractIn situ observing networks are increasingly being used to study greenhouse gas emissions in urban environments. While the need for sufficiently dense observations has often been discussed, density requirements depend on the question posed and interact with other choices made in the analysis. Focusing on the interaction of network density with varied meteorological information used to drive atmospheric transport, we perform geostatistical inversions of methane flux in the South Coast Air Basin, California, in 2015–2016 using transport driven by a locally tuned Weather Research and Forecasting configuration as well as by operationally available meteorological products. We find total‐basin flux estimates vary by as much as a factor of two between inversions, but the spread can be greatly reduced by calibrating the estimates to account for modeled sensitivity. Using observations from the full Los Angeles Megacities Carbon Project observing network, inversions driven by low‐resolution generic wind fields are robustly sensitive (p < 0.05) to seasonal differences in methane flux and to the increase in emissions caused by the 2015 Aliso Canyon natural gas leak. When the number of observing sites is reduced, the basin‐wide sensitivity degrades, but flux events can be detected by testing for changes in flux variance, and even a single site can robustly detect basin‐wide seasonal flux variations. Overall, an urban monitoring system using an operational methane observing network and off‐the‐shelf meteorology could detect many seasonal or event‐driven changes in near real time—and, if calibrated to a model chosen as a transfer standard, could also quantify absolute emissions.Key PointsLA CH4 flux estimates differ by driving meteorology but agree when calibrated for model sensitivityAliso Canyon leak can be detected by inversions using operational meteorologyOperational meteorology driven inversions significantly detect seasonal emission changes even with only one site
dc.publisherWiley Periodicals, Inc.
dc.subject.otheremissions monitoring
dc.subject.otherurban emissions
dc.subject.othergreenhouse gas emissions
dc.subject.otherflux inversion
dc.subject.othermethane
dc.subject.otherevent detection
dc.titleDetecting Urban Emissions Changes and Events With a Near‐Real‐Time‐Capable Inversion System
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149534/1/jgrd55279-sup-0001-Text_SI-S01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149534/2/jgrd55279.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149534/3/jgrd55279_am.pdf
dc.identifier.doi10.1029/2018JD029224
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferencePugliese, S. C. ( 2017 ). Observational constraints on air quality and greenhouse gases in the greater Toronto area (PhD thesis), University of Toronto (Canada).
dc.identifier.citedreferenceLin, J., & Gerbig, C. ( 2005 ). Accounting for the effect of transport errors on tracer inversions. Geophysical Research Letters, 32, L01802. https://doi.org/10.1029/2004GL021127
dc.identifier.citedreferenceLin, J., Gerbig, C., Wofsy, S., Andrews, A., Daube, B., Davis, K., & Grainger, C. ( 2003 ). A near‐field tool for simulating the upstream influence of atmospheric observations: The stochastic time‐inverted Lagrangian transport (STILT) model. Journal of Geophysical Research, 108 ( D16 ), 4493. https://doi.org/10.1029/2002JD003161
dc.identifier.citedreferenceLin, J. C., Mallia, D. V., Wu, D., & Stephens, B. B. ( 2017 ). How can mountaintop CO 2 observations be used to constrain regional carbon fluxes? Atmospheric Chemistry and Physics, 17 ( 9 ), 5561 – 5581.
dc.identifier.citedreferenceLopez‐Coto, I., Ghosh, S., Prasad, K., & Whetstone, J. ( 2017 ). Tower‐based greenhouse gas measurement network design—The National Institute of Standards and Technology North East Corridor Testbed. Advances in Atmospheric Sciences, 34 ( 9 ), 1095 – 1105.
dc.identifier.citedreferenceLu, R., & Turco, R. P. ( 1994 ). Air pollutant transport in a coastal environment. Part I: Two‐dimensional simulations of sea‐breeze and mountain effects. Journal of the Atmospheric Sciences, 51, 2285 – 2308. https://doi.org/10.1175/1520-0469(1994)051<2285:APTIAC>2.0.CO;2
dc.identifier.citedreferenceLu, R., & Turco, R. P. ( 1995 ). Air pollutant transport in a coastal environment—II. Three‐dimensional simulations over Los Angeles basin. Atmospheric Environment, 29, 1499 – 1518. https://doi.org/10.1016/1352-2310(95)00015-Q
dc.identifier.citedreferenceMays, K. L., Shepson, P. B., Stirm, B. H., Karion, A., Sweeney, C., & Gurney, K. R. ( 2009 ). Aircraft‐based measurements of the carbon footprint of Indianapolis. Environmental Science & Technology, 43 ( 20 ), 7816 – 7823.
dc.identifier.citedreferenceMcKain, K., Down, A., Raciti, S. M., Budney, J., Hutyra, L. R., Floerchinger, C., Herndon, S. C., Nehrkorn, T., Zahniser, M. S., Jackson, R. B., Phillips, N., & Wofsy, S. C. ( 2015 ). Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. Proceedings of the National Academy of Sciences, 112 ( 7 ), 1941 – 1946.
dc.identifier.citedreferenceMcKain, K., Wofsy, S. C., Nehrkorn, T., Eluszkiewicz, J., Ehleringer, J. R., & Stephens, B. B. ( 2012 ). Assessment of ground‐based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proceedings of the National Academy of Sciences, 109, 8423 – 8428. https://doi.org/10.1073/pnas.1116645109
dc.identifier.citedreferenceMesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., & Shi, W. ( 2006 ). North American regional reanalysis. Bulletin of the American Meteorological Society, 87 ( 3 ), 343 – 360.
dc.identifier.citedreferenceMichalak, A. M., Bruhwiler, L., & Tans, P. P. ( 2004 ). A geostatistical approach to surface flux estimation of atmospheric trace gases. Journal of Geophysical Research, 109, D14109. https://doi.org/10.1029/2003JD004422
dc.identifier.citedreferenceNehrkorn, T., Eluszkiewicz, J., Wofsy, S. C., Lin, J. C., Gerbig, C., Longo, M., & Freitas, S. ( 2010 ). Coupled weather research and forecasting–stochastic time‐inverted Lagrangian transport (WRF–STILT) model. Meteorology and Atmospheric Physics, 107 ( 1‐2 ), 51 – 64.
dc.identifier.citedreferenceNehrkorn, T., Henderson, J., Leidner, M., Mountain, M., Eluszkiewicz, J., McKain, K., & Wofsy, S. ( 2013 ). WRF simulations of the urban circulation in the Salt Lake City area for CO 2 modeling. Journal of Applied Meteorology and Climatology, 52 ( 2 ), 323 – 340.
dc.identifier.citedreferencePeischl, J., Ryerson, T., Brioude, J., Aikin, K., Andrews, A., Atlas, E., Blake, D., Daube, B., Gouw, J., Dlugokencky, E., Frost, G. J., Gentner, D. R., Gilman, J. B., Goldstein, A. H., Harley, R. A., Holloway, J. S., Kofler, J., Kuster, W. C., Lang, P. M., Novelli, P. C., Santoni, G. W., Trainer, M., Wofsy, S. C., & Parrish, D. D. ( 2013 ). Quantifying sources of methane using light alkanes in the Los Angeles basin, California. Journal of Geophysical Research: Atmospheres, 118, 4974 – 4990. https://doi.org/10.1002/jgrd.50413
dc.identifier.citedreferenceRichardson, S., Miles, N., Davis, K., Lauvaux, T., & Martins, D. ( 2016 ). CO 2, CO, and CH 4 surface in situ measurement network in support of the Indianapolis FLUX (INFLUX) Experiment. Elementa: Science of the Anthropocene.
dc.identifier.citedreferenceShusterman, A. A., Teige, V. E., Turner, A. J., Newman, C., Kim, J., & Cohen, R. C. ( 2016 ). The berkeley atmospheric CO 2 observation network: Initial evaluation. Atmospheric Chemistry and Physics, 16 ( 21 ), 13,449 – 13,463.
dc.identifier.citedreferenceTurner, A. J., Shusterman, A. A., McDonald, B. C., Teige, V., Harley, R. A., & Cohen, R. C. ( 2016 ). Network design for quantifying urban CO 2 emissions: Assessing trade‐offs between precision and network density. Atmospheric Chemistry and Physics, 21, 13,465 – 13,475.
dc.identifier.citedreferenceVerhulst, K. R., Karion, A., Kim, J., Salameh, P. K., Keeling, R. F., Newman, S., Miller, J., Sloop, C., Pongetti, T., Rao, P., Wong, C., Hopkins, F. M., Yadav, V., Weiss, R. F., Duren, R. M., & Miller, C. E. ( 2017 ). Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project—Part 1: Calibration, urban enhancements, and uncertainty estimates. Atmospheric Chemistry and Physics, 17 ( 13 ), 8313 – 8341.
dc.identifier.citedreferenceWare, J., Kort, E. A., DeCola, P., & Duren, R. ( 2016 ). Aerosol lidar observations of atmospheric mixing in Los Angeles: Climatology and implications for greenhouse gas observations. Journal of Geophysical Research: Atmospheres, 121, 9862 – 9878. https://doi.org/10.1002/2016JD024953
dc.identifier.citedreferenceWecht, K. J., Jacob, D. J., Sulprizio, M. P., Santoni, G., Wofsy, S. C., Parker, R., Bösch, H., & Worden, J. ( 2014 ). Spatially resolving methane emissions in California: Constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations. Atmospheric Chemistry and Physics, 14 ( 15 ), 8173 – 8184.
dc.identifier.citedreferenceWennberg, P. O., Mui, W., Wunch, D., Kort, E. A., Blake, D. R., Atlas, E. L., Santoni, G. W., Wofsy, S. C., Diskin, G. S., Jeong, S., & Fischer, M. L. ( 2012 ). On the sources of methane to the Los Angeles atmosphere. Environmental Science & Technology, 46 ( 17 ), 9282 – 9289.
dc.identifier.citedreferenceWong, K., Fu, D., Pongetti, T., Newman, S., Kort, E., Duren, R., Hsu, Y.‐K., Miller, C., Yung, Y., & Sander, S. ( 2015 ). Mapping CH 4:CO 2 ratios in Los Angeles with CLARS‐FTS from Mount Wilson, California. Atmospheric Chemistry and Physics, 15 ( 1 ), 241 – 252.
dc.identifier.citedreferenceYadav, V., Mueller, K., Verhulst, K., Duren, R., Nehrkorn, T., Kim, J., Weiss, R. F., Keeling, R., Sander, S., Fischer, M., Newman, S., Falk, M., Kuwayama, T., Rafiq, T., Whetstone, J., Karion, A., & Miller, C. ( 2019 ). Spatio‐temporally resolved methane fluxes from the Los Angeles Megacity. https://doi.org/10.1029/2018JD030062
dc.identifier.citedreferenceYe, X., Lauvaux, T., Kort, E. A., Oda, T., Feng, S., Lin, J. C., Yang, E., & Wu, D. ( 2017 ). Constraining fossil fuel CO 2 emissions from urban area using OCO‐2 observations of total column CO 2. Atmospheric Chemistry and Physics Discussions, 2017, 1 – 30. https://doi.org/10.5194/acp-2017-1022
dc.identifier.citedreferenceZhao, C., Andrews, A. E., Bianco, L., Eluszkiewicz, J., Hirsch, A., MacDonald, C., Nehrkorn, T., & Fischer, M. L. ( 2009 ). Atmospheric inverse estimates of methane emissions from Central California. Journal of Geophysical Research, 114, D16302. https://doi.org/10.1029/2008JD011671
dc.identifier.citedreferenceAngevine, W. M., Brioude, J., McKeen, S., Holloway, J. S., Lerner, B. M., Goldstein, A. H., Guha, A., Andrews, A., Nowak, J. B., Evan, S., Fischer, M. L., Gilman, J. B., & Bon, D. ( 2013 ). Pollutant transport among California regions. Journal of Geophysical Research: Atmospheres, 118, 6750 – 6763. https://doi.org/10.1002/jgrd.50490
dc.identifier.citedreferenceAngevine, W. M., Eddington, L., Durkee, K., Fairall, C., Bianco, L., & Brioude, J. ( 2012 ). Meteorological model evaluation for CalNex 2010. Monthly Weather Review, 140 ( 12 ), 3885 – 3906.
dc.identifier.citedreferenceBagley, J. E., Jeong, S., Cui, X., Newman, S., Zhang, J., Priest, C., Campos‐Pineda, M., Andrews, A. E., Bianco, L., Lloyd, M., Lareaum, N., Clements, C., & Fischer, M. L. ( 2017 ). Assessment of an atmospheric transport model for annual inverse estimates of California greenhouse gas emissions. Journal of Geophysical Research: Atmospheres, 122, 1901 – 1918. https://doi.org/10.1002/2016JD025404
dc.identifier.citedreferenceBenjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., & Manikin, G. S. ( 2016 ). A North American hourly assimilation and model forecast cycle: The rapid refresh. Monthly Weather Review, 144 ( 4 ), 1669 – 1694.
dc.identifier.citedreferenceBreon, F. M., Broquet, G., Puygrenier, F. Chevallier, Xueref‐Rémy, I., Ramonet, M., Dieudonne, E., Lopez, M., Schmidt, M., Perrussel, O., & Ciais, P. ( 2014 ). An attempt at estimating Paris area CO 2 emissions from atmospheric concentration measurements. Atmospheric Chemistry and Physics, 14, 9647 – 9703. https://doi.org/10.5194/acpd-14-9647-2014
dc.identifier.citedreferenceByrd, R. H., Lu, P., Nocedal, J., & Zhu, C. ( 1995 ). A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16 ( 5 ), 1190 – 1208.
dc.identifier.citedreferenceConley, S., Franco, G., Faloona, I., Blake, D. R., Peischl, J., & Ryerson, T. ( 2016 ). Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA. Science, 351, aaf2348.
dc.identifier.citedreferenceDavis, K. J., Deng, A., Lauvaux, T., Miles, N. L., Richardson, S. J., Sarmiento, D. P., Gurney, K. R., Hardesty, R. M., Bonin, T. A., Brewer, W. A., Lamb, B. K., Shepson, P. B., Harvey, R. M., Cambaliza, M. O., Sweeney, C., Turnbull, J. C., Whetstone, J., & Karion, A. ( 2017 ). The Indianapolis Flux Experiment (INFLUX): A test‐bed for developing urban greenhouse gas emission measurements. Elementa: Science of the Anthropocene, 5, 21.
dc.identifier.citedreferenceDeng, A., Lauvaux, T., Davis, K. J., Gaudet, B. J., Miles, N., Richardson, S. J., Wu, K., Sarmiento, D. P., Hardesty, R. M., Bonin, T. A., Alan Brewer, W., & Gurney, K. ( 2017 ). Toward reduced transport errors in a high resolution urban CO 2 inversion system. Elementa: Science of the Anthropocene, 5, 20.
dc.identifier.citedreferenceDuren, R. M., & Miller, C. E. ( 2012 ). Measuring the carbon emissions of megacities. Nature Climate Change, 2 ( 8 ), 560.
dc.identifier.citedreferenceFeng, S., Lauvaux, T., Newman, S., Rao, P., Ahmadov, R., Deng, A., Díaz‐Isaac, L. I., Duren, R. M., Fischer, M. L., Gerbig, C., Gurney, K. R., Huang, J., Jeong, S., Li, Z., Miller, C. E., O’Keeffe, D., Patarasuk, R., Sander, S. P., Song, Y., Wong, K. W., & Yung, Y. L. ( 2016 ). Los Angeles megacity: A high‐resolution land–atmosphere modelling system for urban CO 2 emissions. Atmospheric Chemistry and Physics, 16 ( 14 ), 9019 – 9045. https://doi.org/10.5194/acp-16-9019-2016
dc.identifier.citedreferenceGourdji, S., Yadav, V., Karion, A., Mueller, K., Conley, S., Ryerson, T., Nehrkorn, T., & Kort, E. ( 2018 ). The Aliso Canyon natural gas leak as a natural tracer experiment: Reducing errors in aircraft atmospheric inversion estimates of point‐source emissions. Environmental Research Letters, 13, 045003.
dc.identifier.citedreferenceGurney, K. R., Razlivanov, I., Song, Y., Zhou, Y., Benes, B., & Abdul‐Massih, M. ( 2012 ). Quantification of fossil fuel CO 2 emissions on the building/street scale for a large US city. Environmental Science & Technology, 21, 12,194 – 12,202.
dc.identifier.citedreferenceHarrison, R., Dall’Osto, M., Beddows, D., Thorpe, A., Bloss, W., Allan, J., Coe, H., Dorsey, J., Gallagher, M., Martin, C., Whitehead, J., Williams, P. I., Jones, R. L., Langridge, J. M., Benton, A. K., Ball, S. M., Langford, B., Hewitt, C. N., Davison, B., Martin, D., Petersson, K. F., Henshaw, S. J., White, I. R., Shallcross, D. E., Barlow, J. F., Dunbar, T., Davies, F., Nemitz, E., Phillips, G. J., Helfter, C., Di Marco, C. F., & Smith, S. ( 2012 ). Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): An overview of the REPARTEE experiment and its conclusions. Atmospheric Chemistry and Physics, 12 ( 6 ), 3065 – 3114.
dc.identifier.citedreferenceJeong, S., Zhao, C., Andrews, A. E., Bianco, L., Wilczak, J. M., & Fischer, M. L. ( 2012 ). Seasonal variation of CH 4 emissions from central California. Journal of Geophysical Research, 117, D11306. https://doi.org/10.1029/2011JD016896
dc.identifier.citedreferenceKort, E. A., Angevine, W. M., Duren, R., & Miller, C. E. ( 2013 ). Surface observations for monitoring urban fossil fuel CO 2 emissions: Minimum site location requirements for the Los Angeles megacity. Journal of Geophysical Research: Atmospheres, 118, 1577 – 1584. https://doi.org/10.1002/jgrd.50135
dc.identifier.citedreferenceKort, E. A., Frankenberg, C., Miller, C. E., & Oda, T. ( 2012 ). Space‐based observations of megacity carbon dioxide. Geophysical Research Letters, 39, L17806. https://doi.org/10.1029/2012GL052738
dc.identifier.citedreferenceLauvaux, T., Miles, N. L., Richardson, S. J., Deng, A., Stauffer, D. R., Davis, K. J., Jacobson, G., Rella, C., Calonder, G., & DeCola, P. L. ( 2013 ). Urban emissions of CO 2 from Davos, Switzerland: The first real‐time monitoring system using an atmospheric inversion technique. Journal of Applied Meteorology and Climatology, 52 ( 12 ), 2654 – 2668. https://doi.org/10.1175/jamc-d-13-038.1
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.