Search Constraints
Filtering by:
Language
English
Remove constraint Language: English
Discipline
Engineering
Remove constraint Discipline: Engineering
« Previous |
1 - 10 of 51
|
Next »
Number of results to display per page
View results as:
Search Results
-
- Creator:
- Carlevaris-Bianco, Nicholas , Ushani, Arash , and Eustice, Ryan
- Description:
- This is a large scale, long-term autonomy dataset for robotics research collected on the University of Michigan’s North Campus. The dataset consists of omnidirectional imagery, 3D lidar, planar lidar, GPS, and proprioceptive sensors for odometry collected using a Segway robot. The dataset was collected to facilitate research focusing on longterm autonomous operation in changing environments. The dataset is comprised of 27 sessions spaced approximately biweekly over the course of 15 months. The sessions repeatedly explore the campus, both indoors and outdoors, on varying trajectories, and at different times of the day across all four seasons. This allows the dataset to capture many challenging elements including: moving obstacles (e.g., pedestrians, bicyclists, and cars), changing lighting, varying viewpoint, seasonal and weather changes (e.g., falling leaves and snow), and long-term structural changes caused by construction projects. To further facilitate research, we also provide ground-truth pose for all sessions in a single frame of reference. and A detailed description of the dataset and the methods used to generate it is in the document nclt.pdf. If you use this dataset in your research please cite: Carlevaris-Bianco, N., Ushani, A., Eustice, R. (2021). The University of Michigan North Campus Long-Term Vision and LIDAR Dataset [Data set]. University of Michigan - Deep Blue. https://doi.org/10.7302/7rnm-6a03
- Keyword:
- Long-term SLAM, place recognition, lidar, computer vision, and field and service robotics
- Citation to related publication:
- Carlevaris-Bianco, Nicholas, et al. “University of Michigan North Campus Long-Term Vision and Lidar Dataset.” The International Journal of Robotics Research, vol. 35, no. 9, Aug. 2016, pp. 1023–1035, doi:10.1177/0278364915614638.
- Discipline:
- Engineering
- Title:
- The University of Michigan North Campus Long-Term Vision and LIDAR Dataset
-
- Creator:
- van Velden, Grace and Reddy, Raghav
- Description:
- A household survey was developed to capture household perceptions and behaviors around drinking water use. It consisted of several modules: key informant and household demographics, household assets and consumption, water use behaviors in the dry season, water use behaviors during the rest of the year, and water supply maintenance and repair. Intervention and safe water device surveys were also developed; the household and intervention surveys were administered via Qualtrics. and This record consists of several survey instruments, exported where appropriate from Qualtrics into PDF and .qsf.
- Keyword:
- Bangladesh, arsenic, sustainability, survey
- Citation to related publication:
- Reddy, R. (2020). Arsenic in Bangladesh's Drinking Water: Evaluating Factors That Have Hindered Two Decades of Mitigation Efforts, and the Opportunities to Address Them. [Doctoral thesis, University of Michigan]. University of Michigan - Deep Blue. http://hdl.handle.net/2027.42/155203
- Discipline:
- Engineering
- Title:
- Household survey about water use perceptions and behaviors for use in Bangladesh
-
- Creator:
- Agnit Mukhopadhyay
- Description:
- Conducting quantitative metrics-based performance analysis of first-principles-based global magnetosphere models is an essential step in understanding their capabilities and limitations, and providing scope for improvements in order to enhance their space weather prediction capabilities for a range of solar conditions. In this study, a detailed comparison of the performance of three global magnetohydrodynamic (MHD) models in predicting the Earth’s magnetopause location and ionospheric cross polar cap potential (CPCP) has been presented. Using the Community Coordinated Modeling Center’s Run-on-Request system and extensive database on results from various magnetospheric scenarios simulated for a variety of solar wind conditions, the aforementioned model predictions have been compared for magnetopause standoff distance estimations obtained from six empirical models, and with cross polar cap potential estimations obtained from the Assimmilative Mapping of Ionospheric Electrodynamics (AMIE) Model and the Super Dual Auroral Radar Network (SuperDARN) observations. We have considered a range of events spanning different space weather activity to analyze the performance of these models. Using a fit performance metric analysis for each event, we have quantified the models’ reproducibility of magnetopause standoff distances and CPCP against empirically-predicted observations, and identified salient features that govern the performance characteristics of the modeled magnetospheric and ionospheric quantities.
- Citation to related publication:
- Mukhopadhyay, A., et al. (2020). Global Magnetohydrodynamic Simulations: Performance Quantification of Magnetopause Distances and Convection Potential Predictions. Forthcoming.
- Discipline:
- Engineering and Science
- Title:
- Dataset Containing Global Modeling Results Comparing Magnetopause Distances and CPCP
-
- Creator:
- Zhang, Kaihua and Collette, Matthew D.
- Description:
- This Ph.D. research focuses on two subject areas: experimental and numerical model, which serves as two essential parts of a digital twin. A digital twin contains models of real-world structures and fuses data from observations of the structures and scale experiment to pull the models into better agreement with the real world. Digital twin models have the promise of representing complex marine structures and providing enhanced lifecycle performance and risk forecasts. Experimentally verifying the updating approaches is necessary but rarely performed. Thus, the proposed work is designing an experiment and developing a numerical model updated by the experimental data. The dataset contains all the data collected in the experiment of a four-crack hexagon- shaped specimen is presented, designed to mimic many of the properties of complex degrading marine structural systems, such as crack interaction, component inter- dependence, redundant load path, and non-binary failure.
- Keyword:
- System Reliability, Dynamic Bayesian Networks, Fatigue Experiment, Crack Length Measurement, Experimental Validation, Reliability Prediction
- Citation to related publication:
- Kaihua, Zhang (2020) "Development and Experimental Validation of Dynamic Bayesian Networks for System Reliability Prediction" Doctoral Dissertation, University of Michigan. Deep Blue. http://hdl.handle.net/2027.42/155231, "Evaluating Crack Growth Prediction in Structural Systems with Dynamic Bayesian Networks", submitted to Computers and Structure, and "Experimental Investigation of Structural System Capacity with Multiple Fatigue Cracks", submitted to Marine Structures
- Discipline:
- Engineering
- Title:
- Dataset for thesis "Development and Experimental Validation of Dynamic Bayesian Networks for System Reliability Prediction"
-
- Creator:
- Attari, Ali
- Description:
- Please refer to the "README.txt" for more details., MATLAB R2018a (Mathworks, Natick, MA, USA) was used to process this data., and Excel (Microsoft Office) was used to store survey data on the comfort of both systems and also to provide absolute and relative intraobserver variablities for the DM device.
- Keyword:
- Digital Manometry
- Citation to related publication:
- Comparison of anorectal function measured using wearable digital manometry and a high resolution manometry system Attari A, Chey WD, Baker JR, Ashton-Miller JA (2020) Comparison of anorectal function measured using wearable digital manometry and a high resolution manometry system. PLOS ONE 15(9): e0228761. https://doi.org/10.1371/journal.pone.0228761
- Discipline:
- Engineering, Science, and Health Sciences
- Title:
- Data for "Comparison of Anorectal Function Measured using Wearable Digital Manometry and a High Resolution Manometry System." article (PLOS ONE) PONE-D-20-01826R1
-
- Creator:
- Moniri, Saman and Shahani, Ashwin J.
- Description:
- The data is comprised of 20 .hdf files of the X-ray projections recorded during isothermal annealing of Zn-Mg samples, at discrete time-steps shown below for files names ending in ‘...30141’ to ‘…30161’: 30141: prior to annealing; 30142: 1 min annealing; 30143: 3 min; 30144: 5 min; 30145: 7 min; 30146: 10 min; 30147: 15 min; 30148: 20 min; 30150: 31 min; 30151: 1 hr; 30152: 2 hr; 30153: 3 hr; 30154: 4 hr; 30155: 5 hr; 30156: 6 hr; 30157:7 hr; 30158: 8 hr; 30159:9 hr; 30160: 9 hr, 10 min; 30161: 10 hr The raw data file is in .hdf format and can be reconstructed into .tiff, e.g., by using the TomoPy toolbox in Python.
- Keyword:
- Spiral eutectics
- Discipline:
- Engineering
- Title:
- Topological transitions of spiral eutectics
-
- Creator:
- Brandt, Daniel, A., Bussy-Virat, Charles, D., and Ridley, Aaron, J.
- Description:
- The Multifaceted Optimization Algorithm (MOA) is a tool for generating corrected empirical model thermospheric densities during geomagnetic storms. It consists of a suite of Python functions that operate around the Spacecraft Orbit Characterization Kit (SpOCK), an orbital propagator developed by Charles D. Bussy-Virat, PhD, Joel Getchius, and Aaron J. Ridley, PhD at the University of Michigan, and it estimates new densities for the NRLMSISE-00 atmospheric model. MOA generates new model densities by estimating modifications to inputs to the NLRMSISE-00 model that minimize the orbit error between modeled spacecraft in SpOCK, and their actual altitudes as described in publicly-available Two-Line Element Sets (TLEs), made available online via Space-track.org. MOA consists of three sub-process: (1) The Area Optimization Algorithm (AROPT), (2) the F10.7 Optimization Algorithm (FOPT), and (3) the Ap Optimization Algorithm (APOPT). AROPT computes the contribution to the drag of the modeled spacecraft due to their varying projected area. FOPT estimates modifications to the 10.7 cm solar radio flux in NRLMSISE-00, and APOPT estimates modifications to the Earth's magnetic activity in NRLMSISE-00. MOA finds these modifications across many spacecraft, and the medians of those modifications are then applied in NLRMSISE-00 along the orbit of another satellite to generate new densities for verification. In this instance, modifications are applied along the orbits of the Swarm spacecraft and compared to Swarm GPS-derived densities.
- Keyword:
- Orbit, Satellite, Two-line Element Set, Thermosphere, and Drag
- Discipline:
- Engineering
- Title:
- A Simple Method for Correcting Empirical Model Densities during Geomagnetic Storms Using Satellite Orbit Data
-
- Creator:
- Malik, Hafiz and Khan, Muhammad Khurran, King Saud University
- Description:
- Details of the microphone used for data collection, acoustic environment in which data was collected, and naming convention used are provided here. 1 - Microphones Used: The microphones used to collect this dataset belong to 7 different trademarks. Table (1) illustrates the number of used Mics of different trademarks and models. Table 1: Trademarks and models of Mics Mic Trademark Mic Model # of Mics Shure SM-58 3 Electro-Voice RE-20 2 Sennheiser MD-421 3 AKG C 451 2 AKG C 3000 B 2 Neumann KM184 2 Coles 4038 2 The t.bone MB88U 6 Total 22 2- Environment Description: A brief description of the 6 environments in which the dataset was collected is presented here: (i) Soundproof room: a small room (nearly 1.5m × 1.5m × 2m), which is closed and completely isolated. With an exception of a small window in the front side of the room which is made of glass, all the walls of the room are made of wood and covered by a layer of sponge from the inner side, and the floor is covered by carpet. (ii) Class room: standard class room (6m × 5m × 3m). (iii) Lab: small lab (4m × 4m × 3m). All the walls are made of glasses and the floor is covered by carpet. The lab contains 9 computers. (iv) Stairs: is in the second floor. The place of recording is 3m × 5m (v) Parking: is the college parking. (vi) Garden: is an open space outside the buildings. 3- Naming Convention: This set of rules were followed as a naming convention to give each file in the dataset a unique name: (i) The file name is 19 characters long, and consists of 5 sections separated by underscores. (ii) The first section is of 3 characters indicates the Microphone trademark. (iii) The second section of 4 characters indicates the microphone model as in table (2). (iv) The third section of 2 characters indicates a specific microphone within a set of microphones of the same trademark and model, since we have more than one microphone of the same trademark and model. (v) The fourth section of 2 characters indicates the environment, where Soundproof room --> 01 Class room --> 02 Lab --> 03 Stairs --> 04 Parking --> 05 Garden --> 06 (vi) The fifth section of 2 characters indicates the language, where Arabic --> 01 English --> 02 Chinese --> 03 Indonesian --> 04 (vii) The sixth section of 2 characters indicates the speaker. Table 2: Microphones Naming Criteria Original Mic Trademark and model --> Naming Convenient Shure SM-58 --> SHU_0058 Electro-Voice RE-20 --> ELE_0020 Sennheiser MD-421 --> SEN_0421 AKG C 451 --> AKG_0451 AKG C 3000 B --> AKG_3000 Neumann KM184 --> NEU_0184 Coles 4038 --> COL_4038 The t.bone MB88U --> TBO_0088 For example: SEN_0421_02_01_02_03 is an English file recorded by speaker number 3 in the soundproof room using microphone number 2 of Sennheiser MD-421
- Keyword:
- audio forensic, multimedia forensics, microphone identification, tamper detection, splicing detection, and codec identification
- Citation to related publication:
- Muhammad Khurram Khan, Mohammed Zakariah, Hafiz Malik & Kim-Kwang Raymond Choo (2018). A novel audio forensic data-set for digital multimedia forensics, Australian Journal of Forensic Sciences, 50:5, 525-542, http://dx.doi.org/10.1080/00450618.2017.1296186
- Discipline:
- Government, Politics and Law, Science, and Engineering
- Title:
- The KSU-UMD Dataset for Benchmarking for Audio Forensic Algorithms
-
- Creator:
- Crisp, Dakota N., Cheung, Warwick, Gliske, Stephen V., Lai, Alan, Freestone, Dean R., Grayden, David B., Cook, Mark J., and Stacey, William C.
- Description:
- The data and the scripts are to show that seizure onset dynamics and evoked responses change over the progression of epileptogenesis defined in this intrahippocampal tetanus toxin rat model. All tests explored in this study can be repeated with the data and scripts included in this repository. and Dataset citation: Crisp, D.N., Cheung, W., Gliske, S.V., Lai, A., Freestone, D.R., Grayden, D.B., Cook, MJ., Stacey, W.C. (2019). Epileptogenesis modulates spontaneous and responsive brain state dynamics [Data set]. University of Michigan Deep Blue Data Repository. https://doi.org/10.7302/r6vg-9658
- Keyword:
- evoked response, stimulation, bifurcation, epilepsy, seizure, divergence, and dynamics
- Discipline:
- Health Sciences, Science, and Engineering
- Title:
- Epileptogenesis modulates spontaneous and responsive brain state dynamics - Code & Data
-
- Creator:
- Crisp, Dakota N., Saggio, Maria L., Scott, Jared, Stacey, William C., Nakatani, Mitsuyoshi, Gliske, Stephen V., and Lin, Jack
- Description:
- This data and scripts are meant to test and show seizure differentiation based on bifurcation theory. A zip file is included which contains real and simulated seizure waveforms, Matlab scripts, and metadata. The matlab scripts allow for visual review validation and objective feature analysis. The file “README.txt” provides more detail about each individual file within the zip file. and Data citation: Crisp, D.N., Saggio, M.L., Scott, J., Stacey, W.C., Nakatani, M., Gliske, S.F., Lin, J. (2019). Epidynamics: Navigating the map of seizure dynamics - Code & Data [Data set]. University of Michigan Deep Blue Data Repository. https://doi.org/10.7302/ejhy-5h41
- Keyword:
- Bifurcation, Epilepsy, Seizure, and Divergence
- Citation to related publication:
- Saggio, M.L., Crisp, D., Scott, J., Karoly, P.J., Kuhlmann, L., Nakatani, M., Murai, T., Dümpelmann, M., Schulze-Bonhage, A., Ikeda, A., Cook, M., Gliske, S.V., Lin, J., Bernard, C., Jirsa, V., Stacey, W., 2020. In pre-print. Epidynamics characterize and navigate the map of seizure dynamics. bioRxiv 2020.02.08.940072. https://doi.org/10.1101/2020.02.08.940072
- Discipline:
- Health Sciences, Science, and Engineering
- Title:
- A taxonomy of seizure dynamotypes - Code & Data